dr. T. Costa

Assistant Professor
Bioelectronics (BE), Department of Microelectronics

Expertise: Analog and mixed-signal CMOS circuit design for biomedical applications, including electroceuticals, implantable devices and lab-on-a-chip; microfabrication methods for monolithic integration of transducers in CMOS for biomedical applications.

Themes: Lab-on-a-chip, Analog and Mixed-Mode Integrated Circuits and Systems, Electroceuticals


Tiago Costa (S’10-M’15) was born in Torres Vedras, Portugal, in 1985. He received the B.Sc. and M.Sc. in electronic engineering from Instituto Superior Técnico - University of Lisbon, Portugal, in 2006 and 2008, respectively, and the Ph.D. in electrical and computer engineering from the same university, in 2014. His PhD research was developed in the signal processing group at INESC-ID, Lisbon, Portugal. In 2015 he joined the Bioelectronic Systems Laboratory at Columbia University, USA, as a postdoctoral research scientist. As of October 2019, he will start a new position as assistant professor at the Bioelectronics group at Delft University of Technology, The Netherlands.


His research interests focus on developing highly miniaturized devices for emerging biomedical applications, such as electroceuticals, implantable devices for wireless physiological monitoring and lab-on-chip, by combining analog and mixed-signal CMOS circuit design with microfabricated and monolithically integrated transducers.

Currently, he is pursuing the development of new devices for minimally invasive and highly targeted interfaces to the nervous system for the next generation of electroceuticals.

EE1C31 Amplifiers and instrumentation

This course introduces the basics of electronic circuits for processing and amplification of information-carrying signals, and the basics of electronic instrumentation.

EE4555 Active implantable biomedical microsystems

Cardiac pacemakers, cochlear implants, neuroprostheses, brain–computer interfaces, deep organ pressure sensors, precise drug delivery units, bioelectronic medicine and electroceuticals

ET4127 Themes in Biomedical Electronics

BioMEMS, biosensors, bioelectronics, ultrasound, microfluidics, wavefield imaging in monitoring, diagnosis and treatment

ET4130 Bioelectricity

Bioelectric phenomena, their sources and their mathematical analysis. Applications to neurostimulation and neuroprosthetic.

TM12003 Electrostimulation of Neurophysiological systems

A Brain-on-Chip Platform for Focused Ultrasonic Stimulation

We intend to develop an innovative brain-on-chip platform to decode the mechanisms underlying ultrasonic neu-romodulation.

  1. Low-cost shaping of electrical stimulation waveforms for bioelectronic medicine with improved efficiency and selectivity
    Amin Rashidi; Francesc Varkevisser; Vasiliki Giagka; Tiago L. Costa; Wouter A. Serdijn;
    In in Proc. 9th Dutch Biomedical Engineering Conf. (BME) 2023,
    January 2023.

  2. Energy efficiency of pulse shaping in electrical stimulation: the interdependence of biophysical effects and circuit design losses
    Francesc Varkevisser; Tiago Costa; Wouter Serdijn;
    Biomedical Physics & Engineering Express,
    Volume 8, Issue 6, 13 September 2022. DOI: 10.1088/2057-1976/ac8c47

  3. Stent with Piezoelectric Transducers for High Spatial Resolution Ultrasound Neuromodulation - a Finite Element Analysis
    I. Dilevicius; W. A. Serdijn; T. L. Costa;
    In proc. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
    Glasgow, UK, IEEE, pp. 4966-4969, July 2022. DOI: 10.1109/EMBC48229.2022.9871956

  4. Pre-Filtering of Stimuli for Improved Energy Efficiency in Electrical Neural Stimulation
    Francesc Varkevisser; Amin Rashidi; Tiago L. Costa; Vasiliki Giagka; Wouter A. Serdijn;
    In Proc. IEEE Biomedical Circuits and Systems Conference (BioCAS) 2022,
    IEEE, October 2022.

  5. Application of a sub–0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing
    Chen Shi; Victoria Andino-Pavlovsky; Stephen A. Lee; Tiago Costa; Jeffrey Elloian; Elisa E. Konofagou; Kenneth L. Shepard;
    Science Advances,
    Volume 7, Issue 19, pp. eabf6312, 2021. DOI: 10.1126/sciadv.abf6312

  6. An Integrated 2D Ultrasound Phased Array Transmitter in CMOS with Pixel Pitch-Matched Beamforming
    Tiago Costa; Chen Shi; Kevin Tien; Jeffrey Elloian; Filipe A. Cardoso; Kenneth Shepard;
    IEEE Transactions on Biomedical Circuits and Systems,
    pp. 1, July 2021. DOI: 10.1109/TBCAS.2021.3096722

  7. Bidirectional Bioelectronic Interfaces: System Design and Circuit Implications
    Y. Liu; A. Urso; Martins da Ponte, Ronaldo; T. Costa; V. Valente; V. Giagka; W.A. Serdijn; T.G. Constandinou; T. Denison;
    IEEE Solid-State Circuits Magazine,
    Volume 12, Issue 2, pp. 30-46, 23 June 2020. DOI: 10.1109/MSSC.2020.2987506

  8. A 0.065-mm(3) Monolithically-Integrated Ultrasonic Wireless Sensing Mote for Real-Time Physiological Temperature MonitoringSyst
    C. Shi; T. Costa; J. Elloian; Y. Zhang; K.L. Shepard;
    IEEE Trans Biomed Circuits,
    Volume 14, Issue 3, pp. 412-424, June 2020. DOI: 10.1109/TBCAS.2020.2971066.

  9. Ablation of piezoelectric polyvinylidene fluoride with a 193 nm excimer laser
    J. Elloian; J. Sherman; T. Costa; C. Shi; K. Shepard;
    Journal of Vacuum Science & Technology A,
    Volume 38, Issue 3, pp. 033202, February 2020. DOI: 10.1116/1.5142494

  10. A CMOS 2D Transmit Beamformer with Integrated PZT Ultrasound Transducers for Neuromodulation
    T. Costa; C. Shi; K. Tien; K.L. Shepard;
    In Proc. 2019 IEEE Custom Integrated Circuits Conference (CICC'2019),
    Austin, TX, USA, IEEE, pp. 1-4, 21-24 April 2019. DOI: 10.1109/CICC.2019.8780236

  11. Monolithic Integration of Micron-scale Piezoelectric Materials with CMOS for Biomedical Applications
    C. Shi; T. Costa; J. Elloian; K.L. Shepard;
    In Proc. 2018 IEEE International Electron Devices Meeting (IEDM'2018),
    San Francisco, CA, USA, IEEE, pp. 4.5.1-4.5.4, Dec. 1-5 2018. DOI: 10.1109/IEDM.2018.8614632

  12. A CMOS Front-End with Integrated Magnetoresistive Sensors for Biomolecular Recognition Detection Applications
    Costa, T.; Cardoso, F.A.; Germano, J.; Freitas, P.P.; Piedade, M.S.;
    IEEE Transactions on Biomedical Circuits and Systems,
    Volume 11, Issue 5, pp. 988-1000, 2017. DOI: 10.1109/TBCAS.2017.2743685

  13. Semi-quantitative method for streptococci magnetic detection in raw milk
    Duarte, C.; Costa, T.; Carneiro, C.; Soares, R.; Jitariu, A.; Cardoso, S.; Piedade, M.; Bexiga, R.; Freitas, P.;
    Volume 6, Issue 2, 2016. DOI: 10.3390/bios6020019

  14. Design and optimization of a CMOS front-end for magnetoresistive sensor based biomolecular recognition detection
    Costa, T.; Germano, J.; Piedade, M.S.; Cardoso, F.A.; Freitas, P.P.;
    In Proceedings - IEEE International Symposium on Circuits and Systems,
    pp. 2859-2862, 2016. DOI: 10.1109/ISCAS.2016.7539189

  15. MagCMOS
    Costa, T.; Cardoso, F.A.; Piedade, M.S.; Freitas, P.P.;
    In Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems,
    Cambridge University Press, 2015. DOI: 10.1017/CBO9781139629539.015

  16. Live demonstration: A CMOS ASIC for precise reading of a Magnetoresistive sensor array for NDT
    Caetano, D.M.; Piedade, M.; Graca, J.; Fernandes, J.; Rosado, L.; Costa, T.;
    In Proceedings - IEEE International Symposium on Circuits and Systems,
    pp. 1906, 2015. DOI: 10.1109/ISCAS.2015.7169039

  17. A neuronal signal detector for biologically generated magnetic fields
    Costa, T.; Piedade, M.S.; Germano, J.; Amaral, J.; Freitas, P.P.;
    IEEE Transactions on Instrumentation and Measurement,
    Volume 63, Issue 5, pp. 1171-1180, 2014. DOI: 10.1109/TIM.2013.2296417

  18. Integration of TMR sensors in silicon microneedles for magnetic measurements of neurons
    Amaral, J.; Pinto, V.; Costa, T.; Gaspar, J.; Ferreira, R.; Paz, E.; Cardoso, S.; Freitas, P.P.;
    IEEE Transactions on Magnetics,
    Volume 49, Issue 7, pp. 3512-3515, 2013. DOI: 10.1109/TMAG.2013.2239274

  19. Measuring brain activity with magnetoresistive sensors integrated in micromachined probe needles
    Amaral, J.; Gaspar, J.; Pinto, V.; Costa, T.; Sousa, N.; Cardoso, S.; Freitas, P.;
    Applied Physics A: Materials Science and Processing,
    Volume 111, Issue 2, pp. 407-412, 2013. DOI: 10.1007/s00339-013-7621-7

  20. CMOS instrumentation system for matrix-based magnetoresistive biosensors
    Costa, T.; Piedade, M.S.; Cardoso, F.A.; Freitas, P.P.;
    In Conference Record - IEEE Instrumentation and Measurement Technology Conference,
    pp. 1315-1318, 2013. DOI: 10.1109/I2MTC.2013.6555626

  21. An instrumentation system based on magnetoresistive sensors for neuronal signal detection
    Costa, T.; Piedade, M.S.; Germano, J.; Amaral, J.; Freitas, P.P.;
    In Conference Record - IEEE Instrumentation and Measurement Technology Conference,
    pp. 1074-1077, 2013. DOI: 10.1109/I2MTC.2013.6555579

  22. Integration of magnetoresistive biochips on a CMOS circuit
    Cardoso, F.A.; Costa, T.; Germano, J.; Cardoso, S.; Borme, J.; Gaspar, J.; Fernandes, J.R.; Piedade, M.S.; Freitas, P.P.;
    IEEE Transactions on Magnetics,
    Volume 48, Issue 11, pp. 3784-3787, 2012. DOI: 10.1109/TMAG.2012.2198449

  23. An ultra-low noise current source for magnetoresistive biosensors biasing
    Costa, T.; Piedade, M.S.; Santos, M.;
    In 2012 IEEE Biomedical Circuits and Systems Conference: Intelligent Biomedical Electronics and Systems for Better Life and Better Environment, BioCAS 2012 - Conference Publications,
    pp. 73-76, 2012. DOI: 10.1109/BioCAS.2012.6418507

  24. A CMOS circuit for precise reading of matrix addressed magnetoresistive biosensors
    Costa, T.; Piedade, M.S.; Fernandes, J.R.;
    In 2011 IEEE Biomedical Circuits and Systems Conference, BioCAS 2011,
    pp. 389-392, 2011. DOI: 10.1109/BioCAS.2011.6107809

BibTeX support

Last updated: 6 Dec 2022