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Abstract—For translinear filters, or log-domain filters, calcu-
lation of the maximal signal-to-noise-ratio, an important filter
specification, is not trivial, due to the inherent companding
behavior and the nonstationary nature of the transistor noise
sources. To address this issue, a nonlinear noise analysis method
is proposed. Based on large-signal calculations, expressions for
the first-order noise and signal–noise intermodulation terms are
computed. The procedure is generally applicable both to static
and dynamic translinear circuits, as illustrated by a number of
generic examples.

Index Terms—Companding, log-domain, noise, translinear.

I. INTRODUCTION

A PROMISING approach to meet the challenges the area
of analog integrated continuous-time filters is facing, due

to ever more restrictive low-voltage and low-power demands,
is formed by the recently introduced class of translinear (TL)
filters [1]–[7]. translinear filters are based on the “dynamic
translinear principle” [8], a generalization of the conventional
translinear principle [9], which we will here refer to as
the “static translinear principle.” Whereas conventional TL
circuits can be used to implement various linear and nonlinear
static transfer functions, dynamic TL circuits implement a
wide variety of dynamic functions, described by differential
equations (DE). Both linear DE’s, i.e., filters [1]–[7], and
nonlinear DE’s, e.g., oscillators [10], [11], adaptive filters [12],
PLL’s [13], [14], and RMS-DC converters [8], [15] can be
realized.

The dynamic range (DR) and the maximal signal-to-noise
ratio (SNR) are important specifications for analog filters.
Determination of the DR of a TL filter is quite easy, if it
is defined as the ratio of the maximal signal level the filter
can handle and the absolute noise floor. The maximal signal
level is determined by a specified maximal distortion level,
for harmonic or intermodulation distortion. The absolute noise
floor is defined as the amount of noise generated within the
filter in the absence of any input signals. Without any signals
present, the equivalent input or output noise can be calculated
using a small-signal equivalent model of the TL filter. Hence,
only linear noise equations have to be solved to calculate the
DR.
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Calculation of the SNR, defined here as the ratio of the
signal power and the noise powerat the same instant, is much
more difficult for TL filters, and, in fact, for all companding
or nonlinear systems. Since TL circuits are explicitly based
on the exponential behavior of the transistor, they are in-
herently instantaneous companding. Therefore, although the
over-all transfer function is linear, even for large signals,
these circuits are internally nonlinear. This results in inter-
modulation of the signals being processed with noise and
interference [16]–[21].

The situation is even complicated by the fact that the
internal noise sources are generally nonstationary. The tran-
sistor currents in a TL filter are signal-dependent. Thus, the
transistor shot noise sources are modulated by the signals being
processed [16], [22], [23].

A number of noise analysis methods for static and dynamic
TL circuit have been proposed previously [20], [24], [25].
However, since the approach used in these publications is
quasilinear and quasistationary, these methods cannot ade-
quately account for the nonlinear and nonstationary properties
of noise in TL circuits. Note that also most circuit simulators
do not facilitate nonlinear noise analysis.

In this paper, a generally applicable nonlinear analysis
method for noise bin TL circuits is proposed. The presented
technique enables calculation of the first-order noise and
signal–noise intermodulation, both in static and dynamic TL
circuits. A current-mode approach is followed, since TL cir-
cuits can be described most elegantly in terms of currents
[9], [25], [26]. Another advantage of this approach is that
the existing theory on static TL circuits, see, e.g., [25] and
[27], directly becomes available to the analysis and synthesis
of dynamic TL circuits [26], [28], [29]. The noise behavior
of the related class of -domain filters [30], [31], based on
the MOS transistor in the strong inversion region, is beyond
the scope of this article. The interested reader is referred to
[16].

In Section II the underlying principles of both static and
dynamic TL circuits are reviewed. Section III considers the
relevant noise sources of the bipolar transistor and the MOS
transistor in the subthreshold region. Section IV describes
the principles of the nonlinear noise analysis method. Its
application is illustrated for some generic examples of static
and dynamic TL circuits in Sections V and VI, respectively.
The examples cover linear and nonlinear TL circuits, operated
in class A and class AB.
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Fig. 1. Four-transistor translinear loop.

II. TRANSLINEAR PRINCIPLES

Translinear circuits can be divided into two major groups:
static and dynamic TL circuits. The first group can be applied
to realize a wide variety of linear and nonlinear static transfer
functions. All kinds of frequency-dependent functions can be
implemented by circuits of the second group. The underlying
principles of static and dynamic TL circuits are reviewed in
this section.

A. Static Translinear Principle

Translinear circuits are based on the exponential relation
between voltage and current, characteristic for the bipolar
transistor and the MOS transistor in the weak inversion region.
The collector current of a bipolar transistor in the active
region is given by

(1)

where all symbols have their usual meaning.
The TL principle applies to loops of semiconductor junc-

tions. A TL loop is characterized by an even number of
junctions [9], [25], [32]. The number of devices with a
clockwise orientation equals the number of counter-clockwise
oriented devices. An example of a four-transistor TL loop
is shown in Fig. 1. It is assumed that the transistors are
somehow biased at the collector currentsthrough , and
have equal emitter areas. When all devices operate at the same
temperature, this yields the familiar representation of TL loops
in terms of products of currents

(2)

This generic TL equation is the basis for a wide variety of
static electronic functions, which are theoretically temperature
and process independent.

B. Dynamic Translinear Principle

The static TL principle is limited to frequency-independent
transfer functions. By admitting capacitors in the TL loops,
the TL principle can be generalized to include frequency
dependent transfer functions. The term “dynamic translinear”
was coined in [8] to describe the resulting class of circuits. In
contrast to other names proposed in literature, such as “log-
domain” [1], “companding current-mode” [2], “exponential
state-space” [33], this term emphasizes the TL nature of these
circuits.

The dynamic TL principle can be explained with reference
to the subcircuit shown in Fig. 2. Using a current-mode
approach, the capacitance current can be expressed in

Fig. 2. Principle of dynamic translinear circuits.

terms of the collector current , the capacitance , and the
thermal voltage as

(3)

where the dot represents differentiation with respect to time.
Obviously, the DC voltage source does not affect .
More insight is gained by slightly rewriting (3) as

(4)

This equation directly states the “dynamic translinear prin-
ciple”: A time derivative of a current can be mapped onto
a product of currents. At this point, the conventional TL
principle comes into play, for, the product of currents on the
right-hand side (RHS) of (4) can be realized very elegantly by
means of this principle. Thus, the implementation of (part of)
a DE becomes equivalent to the implementation of a product
of currents.

The dynamic TL principle can be used to implement a
wide variety of DE’s, describing frequency-dependent signal
processing functions. For example, linear filters are described
by linear DE’s. Examples of nonlinear DE’s are harmonic [10],
[11] and chaotic oscillators, PLL’s [13], [14] and RMS-DC
converters [8], [15].

III. T RANSISTOR NOISE SOURCES

Two types of transistors are applicable to the design of TL
circuits. These are the bipolar transistor and the MOS transistor
operated in the subthreshold region. In this section, the noise
sources of these transistors are shortly reviewed and, their
relative influence in TL circuits is discussed.

The convention used throughout the paper is to preserve
the lower case letter “” for noise currents and the upper case
letter “ ” for signal currents. Indices are used to distinguish
between different noise or signal currents.

A. Bipolar Transistor

The noise behavior of the bipolar transistor is characterized
mainly by four statistically independent noise sources: collec-
tor shot noise, base shot noise, flicker noise, and thermal base
resistance noise.

The collector shot noise is represented by a noise current
source connected between the collector and emitter termi-
nals. The double-sided power spectral density functionof

is white, and equals

(5)

where is the unity charge.
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(a) (b)

Fig. 3. Biasing of a transistor in a translinear circuit using (a) a diode
connection or (b) an amplifier.

The base shot noise is represented by a noise current
source connected between the base and emitter terminals.
The double-sided power spectral density function of this
source is also white, and equals

(6)

In TL circuits, the influence of the base shot noise is
often negligible in comparison to the collector shot noise.
This follows by evaluation of the limited number of schemes
available to force the collector currents. Usually, the collector
currents are forced through the transistors using either diode-
like connections or (simple) amplifier implementations, as
illustrated in Fig. 3. In the diode connected transistor, shown in
Fig. 3(a), and are connected in parallel. The noise power
of is times smaller than the noise power of, and thus
negligible for sufficiently large values of . In Fig. 3(b), the
amplifier further reduces the influence of: when transformed
to the collector terminal, is divided by the current gain
of the amplifier. This amplifier is often implemented by a
stage, which possibly is another transistor in the TL loop, or
a differential pair.

In fact, can become important only when large magnitude
differences, of at least a factor , exist between the collector
currents. In such cases, however, the base currents are likely to
introduce large errors that have to be eliminated. If amplifiers
are used to this end, the influence ofis likewise eliminated.
Only when feed-forward error compensation methods, instead
of negative feedback, are used can be come important,
since it is multiplied by when transformed to the collector
terminal.

The noise, or flicker noise, which is the product of a
process-dependent noise mechanism, is also represented by a
noise current source between the base and emitter terminals.
For dc base currents, the power spectral density of this noise,
given by

(7)

is characterized by a frequency, at which it equals the base
shot noise spectral density (6). The relative importance of the

noise decreases with a decreasing dc current, since
decreases with [34]. Since in common bipolar IC processes,

is quite low, typically a few hertz, noise is usually
negligible compared to the base and collector shot noise. In

some TL circuits, signal noise intermodulation may cause
the flicker noise to be copied from low frequencies to other
frequency bands, due to a time-dependent base current.

In noise analyzes, the collector and base currents are usually
approximated as being dc currents. All corresponding shot
noise sources are thus stationary. For TL circuits, however, this
approximation is not accurate. There, the transistor currents
are often strongly signal-dependent, causing principally non-
stationary shot noise sources. This explains the time variable

in (5) and (6).
The thermal noise , generated by the base resistance

of the bipolar transistor, has a white power spectral density
given by

(8)

where is Boltzman’s constant and is the absolute temper-
ature. Due to the preference for a current-mode approach, the
noise voltage has to be transformed to a noise current
source connected in parallel with .1 Since ,
the (small-signal) transconductance can be
used for this transformation. The signal-dependence ofcan
generally not be neglected in TL circuits. Therefore, the power
spectral density of the transformed current source
is found to be

(9)

Comparing (5) and (9) shows that is negligible when
the transistor is operated at low current levels, where

, while it is the dominant noise source at high current
levels, where . At moderate current levels,
both and have to be included in the analysis.

An indication of the maximal SNR of a TL circuit can be
derived from the SNR of a single bipolar transistor. The signal
power processed by a single transistor is proportional to the
square of . For simplicity, here, we regard the DC value
of as being the processed signal, in which case all noise
sources become stationary. Dividing this by the noise power
in an equivalent noise bandwidth (in hertz) yields the SNR
of a single bipolar transistor

SNR (10)

Fig. 4 plots (10) for and MHz. At low
current levels, the SNR increases linearly proportional to,
due to , while at high current levels, it saturates to 78 dB,
due to . This saturation level follows from the asymptote

SNR (11)

A TL circuit consists of one or several TL loops [25]. Each
of these loops can more or less be regarded as being a cascade
of transistors. According to (10), the SNR of such a loop is

1In principle, this transformation ofvR yields besides a noise current
source between the collector and emitter terminals also a noise voltage source
in series with the collector terminal. However, the influence of the latter on
IC is negligible, due to the high transistor output impedance.
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Fig. 4. Signal-to-noise-ratio of a bipolar transistor, forRB = 600 
 and
B = 1 MHz.

thus limited by the transistor that has the lowest ratio of the
collector current and the equivalent noise bandwidth. The SNR
of a single-loop TL circuit is proportional to (and in the order
of) (11), as discussed in subsequent sections.

B. MOS Transistor

The noise of an MOS transistor in the subthreshold region,
where the – relation is exponential, is basically modeled
by one noise current source, connected between the source
and drain terminals. The power spectral densityof its shot
noise component equals [35]

(12)

where the forward and reverse components of the drain current
in weak inversion equal [36]–[38]

(13)

(14)

and all symbols have their usual meaning. In the saturation
region, the most prevalent region for TL circuits,
and simplifies to [39].

In addition to this white shot noise, the MOS transistor also
exhibits noise. However, it can be shown that noise
is negligible at low current levels [39], the region used in
MOS-TL circuits.

IV. NOISE ANALYSIS METHOD

Due to fact that TL circuits use the exponential nature of the
transistor in a very specific way, their nonlinear properties can
be made more explicit. Basically, three different appearances
of the exponential device characteristics can be distinguished.
First, the multiplication of collector currents, see (2), and
the transformation of noise voltage sources into noise current
sources, see (9), introduce signal noise intermodulation.
Second, due to the time-dependent collector currents, the
noise current sources are generally nonstationary. Finally,
the inclusion of capacitances in DTL circuits may result in
dynamically nonlinear transfers [40].

The objective of the nonlinear noise analysis method is to
determine the equivalent output noise of a TL circuit due to
internal noise production. This is achieved by application of
the following general sequence of steps.

A. TL Equations in the Presence of Noise

The first step is the determination of the TL equations in
the presence of noise. To this end, the main noise sources
of each transistor are added to the circuit. For example, Fig. 5
depicts the inclusion of collector shot noise current sources and
thermal base resistance voltage noise sources in the second-
order TL loop of Fig. 1. All transistors are assumed to be
biased at the currents through .

Since a TL analysis is elaborated in the current-domain, the
thermal noise voltage sources– have to be transformed
into noise current sources through application of (9). In gen-
eral, this transformation introduces signal–noise intermodula-
tion, since – are multiplied by a time-dependent collector
current . Only when the TL loop contains a transistor
that is biased at a constant current, this intermodulation can
be circumvented. Since the junctions in a TL loop are series
connected, – can be combined into a single noise source

. This resulting noise source can move freely through the TL
loop and transformed into a current sourceby application of
(9) to an arbitrary transistor in the loop. Obviously, a transistor
biased at a constant current, having a constant, yields the
simplest result.

Therefore, the noise currents– that accompany the
collector currents – , may, besides the (nonstationary)
collector shot noise, also be thought to include the transformed
thermal voltage noise and possibly other noise contributions.
The total collector current that flows through transistor number

in the circuit thus consists of a signal componentand a
noise component . The TL equation of the circuit in Fig. 5
is then obtained by replacement of the collector currentsin
the noise-free TL (2) by the noisy currents . This yields

(15)

Such a TL decomposition, containing both signals and noise,
is the basis for the nonlinear noise analysis. An important
advantage is that it allows (an approximate) evaluation of the
noise behavior in an early phase of the synthesis path, long
before the circuit design is completed.

B. Input–Output Equation Including First-Order Noise

The second step is the determination of the circuit’s in-
put–output relation, including first-order noise and signal
noise intermodulation terms. Elaboration of the decomposition
in (15) yields a second-order polynomial in– and – . In
general, an th-order polynomial is obtained for anth-order
TL loop. Each separate term of the expanded decomposition
comprises products of signal and/or noise currents. As long
as the noise is much smaller than the signals, products of
noise currents are negligible. Hence, only those product terms
containing at most one noise component, i.e., first-order noise
or signal–noise intermodulation, are relevant. For (15) this
yields

(16)

The input–output relation follows by solving the expanded
decomposition for the output current , which is one of the
currents , as a function of the input current and the noise
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Fig. 5. Translinear loop in the presence of noise.

currents . The resulting expression is a polynomial, a rational
function or an expression containingth-order root functions.
Since only first-order noise components are of interest for
signals that are much larger than the noise, this expression
can be approximated by a first-order,-dimensional Taylor
series with respect to all noise sources. This yields
expressed as a function of and all first-order noise and
signal–noise components.

Note that this approach eliminates all interactions between
the noise sources , while the signal-dependence of the noise
is preserved. The circuit response to all independent noise
sources can therefore be calculated individually and added
afterwards.

C. Autocorrelation and Power Spectral Density

The third step is the determination of the autocorrelation
and power spectral density of . These are easily obtained
when is divided into three mutually uncorrelated compo-
nents. Let symbolize the vector of all independent input
signals applied to the circuit and the vector of all noise
currents . Note that is statisticallydependenton when
it includes nonstationary shot noise. Then, comprises a
deterministic component , a signal component , and
a noise component that are mutually uncorrelated [41]

(17a)

(17b)

(17c)

where denotes a statistical expectation. In principle,
can be separated into a signal-independent noise component

and a signal-dependent noise component [41]. In
TL circuits, however, this is generally inconvenient due to the
dependence of on .

As a result, the autocorrelation of , also
consists of the autocorrelations of these three components. The
same holds for the power density spectrum , the
Fourier transform of to .

Calculation of the autocorrelation and spectral density of
requires some special attention. Each separate term

in , denoted by , equals the product of a noise
current and a (noise-free) function of the signal currents,

. Often is a shot-noise process corresponding to a
collector current that is included in . In that case,

is statistically dependent on . The autocorrelation
of the term should then be calculated as

a conditional expectation over , followed by an expectation

over

(18)

where denotes the autocorrelation of, con-
ditioned on the input signals. Alternatively, in case of a
deterministic “signal,” the expectation overcan be replaced
by a time-average.

For a nonstationary shot-noise process follows that

(19)

Then, the power spectral density of becomes

(20)

D. Output SNR

The final step is the determination of the circuit’s output
SNR for a given input signal. For a meaningful interpretation,
both the signal power and the noise power in the SNR ex-
pression should preferably be independent of time. However,
when the input signals are deterministic or nonstationary,
the noise power obtained by integration of (20) overis
time-dependent.

A convenient way to arrive at time-independent SNR is
then to average the power, or equivalently the power spectral
density, over time.

V. NOISE IN STATIC TRANSLINEAR CIRCUITS

This section applies the proposed noise analysis method to
some generic static TL circuits. The most simple example, a
current mirror, is analyzed first. Subsequently, two examples
of circuits containing a second-order TL loop, a square circuit
and a square root circuit, are considered. Finally, a geometric
mean current splitter is analyzed. Its noise behavior is very
interesting, since the current splitter is used in many TL filters
to increase the DR through class AB operation.

A. Current Mirror

The current mirror is the simplest TL circuit. Whereas, in
general, TL circuits are described by products of currents, the
current mirror is described by a first-order polynomial, which
contains no multiplications. Therefore, one of the two previ-
ously identified mechanisms of signal–noise intermodulation
does not occur in this circuit. The only source of signal–noise
intermodulation is thus the transformation of the noise voltage

into a noise current .
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Fig. 6. Relevant noise sources in a current mirror.

Fig. 6 shows a two-transistor current mirror, biased in class
A by a dc current . The zero-mean input current and
output current are superposed on . The three relevant
noise sources of the circuit are the shot noise sourcesand ,
and the noise voltage source, representing the total thermal
noise of and .

First, the voltage source has to be transformed into an
equivalent noise current source. To this end, multiplication
of by the time-dependenttransconductance

of yields an equivalent noise current sourcein
parallel with , given by

(21)

Clearly, the product in (21) represents the signal–noise
intermodulation present in .

When all transistor nonidealities are neglected, the in-
put–output relation is easily obtained by rewriting the TL
loop equation of the circuit, i.e., .
Rearranging the terms yields

(22)

The output current can be divided into three compo-
nents by a application of (17a)–(17c). This yields

(23a)

(23b)

(23c)

Obviously, since multiplications of collector currents are ab-
sent, and do not introduce any signal–noise intermodula-
tion. Alternatively, this is intuitively clear since and are
situated at the input and output, respectively, and the overall
transfer function of the circuit is linear.

For this circuit, calculation of the autocorrelation and power
spectral density of the total output noise is relatively
simple. All terms are mutually independent, and also the
factors and in the last term are independent. The
autocorrelation of , conditioned on is then
found as

(24)

where , , and are the autocor-
relation functions of , , and , respectively. Since and

are shot noise currents, their (conditional) autocorrelation

Fig. 7. Translinear square circuit with internal noise sources.

satisfies (19). The corresponding collector signal currents
follow from the (noise-free) TL equation

The power spectral density of , conditioned on ,
follows by Fourier transformation of (24)

(25)
where the shot-noise autocorrelation (19) is substituted for,

. A time-independent spectral density, which is preferable
for the output SNR, can be obtained by taking the expectation
over a stationary input . To this end, let be a sine
wave at frequency , given by

(26)

where is the modulation index with respect to the dc
bias current , and is a uniformly distributed stochastic
variable, representing the arbitrary choice of the origin of the
time axis. Then, the expectation of (25) overyields

(27)

(28)

The term including the input power in (27) would not have
been obtained from a standard small-signal noise analysis of
the circuit in its quiescent point. From (28) it follows that at
high current levels, where dominates the noise, the total
output noise can increase up to 1.8 dB (a factor 1.5) for
in case of a sinusoidal input signal. At low current levels, only
“linear noise” can be observed.

B. Square Circuit

The square circuit depicted in Fig. 7, which can be applied,
e.g., as a frequency doubler, contains a second-order TL loop.
The four transistors each contribute a noise source– .
The collector currents of and equals the input signal,
superposed on a DC bias current.

The four noise voltage sources are combined into one source
. Because transistor is biased at a constant current
, can be elegantly transformed to an equivalent noise

current source in parallel with , without introducing (extra)
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signal–noise intermodulation terms. To simplify the equations,
and without loss of generality, will be assumed negligible.
Including – , the TL loop equation reads

(29)

The input–output relation, including first-order noise, fol-
lows by solving (29) for , and application of a Taylor
approximation to –

(30)

Obviously, due to the nonlinear circuit transfer, all sources,
except , which is already at the output, cause signal–noise
intermodulation. If again the sinusoidal input signal of (26)
is adopted, can, using (17a)–(17c), be divided into the
following components

(31a)

(31b)

(31c)

Equation (31c) reveals that and are modulated only by the
fundamental frequency, whereas is also modulated by the
second harmonic frequency component. Further, (31a) shows
that the DC level of the output transistor is a function of the
modulation index .

The power spectral density of and follows
straightforward from (31a) and (31b). For the spectral density
of , conditioned on , we obtain

(32)

By taking the expectation over, the stochastic variable in
, the following time-independent power spectral density is

obtained

(33)

Suppose that an equivalent noise bandwidth around
is of interest. The SNR in this band, obtained from (31b) and
integration of (33), equals (34), shown at the bottom of the
page. For large values of , this SNR approaches

SNR (35)

Fig. 8. Translinear square-root circuit in the presence of noise.

which, according to (10) for , is always smaller than
the SNR of . The latter conclusion shouldn’t be a surprise.
As increases, the power contents of the collector currents
through all transistors, in the loop, except , increases.
Consequently, also their SNR increases. Since a TL loop is
basically a cascade of transistors, will finally limit the
SNR in the entire loop.

A major advantage of symbolic expressions for the SNR the
possibility to perform optimizations. As an example, consider
the relation between and , which can be optimized for a
given input signal. If , it follows from the derivative
of (34) with respect to that maximizes
the SNR.

C. Square-Root Circuit

Another example of a second-order TL loop is found in the
square-root circuit of Fig. 8.

The input–output relation for this circuit, including first-
order noise, equals

(36)

In this case, it is not possible, or at least very cumbersome,
to find an analytical expression for. However, it is directly
clear from (36) that the first term on the RHS equals
and the second term represents the total noise. Using the
proposed analysis method, the spectrum ofconditioned on

is found to be

(37)

Again, a time-independent spectrum is obtained by taking the
expectation over . For the sinusoidal input signal from (26),
the expectation of the square-root in (37) equals approximately

. Thus, becomes

(38)

SNR (34)
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Fig. 9. Principle of class AB operation.

D. Class AB Current Splitters

The current flowing through a transistor is always restricted
to positive values. To facilitate the processing of signals of
both negative and positive polarity, some kind of biasing is
required. One possible solution is class A operation, where the
actual signal is superposed on a dc bias current. The maximal
negative current signal swing is now limited to the dc value
of the bias current.

Another option is class B or class AB operation. A well-
known example is the push–pull output stage used in many
opamps. In class (A)B, an input signal is split up into
two strictly positive signals and . The difference of
these signals equals the original signal. Although
and are strictly positive, the difference can
take on negative values, thus facilitating processing of bipolar
signals. The two signals and are processed by separate
paths, as illustrated in Fig. 9. These signal paths can consist of
complete TL filters, as proposed in [42]. But, it is also possible
to apply class AB operation within a TL filter. As an example,
we mention the class of filters [16], [33], [43]. Class AB
operation is not restricted to dynamic TL circuits. It can also
be applied, e.g., in four-quadrant multipliers.

The input current has to be split into two separate signal
paths. In the equation , two new variables are
introduced. Consequently, an additional expression is required
to fix the relation between and . In class B,
equals when and zero otherwise. When is
negative, , and zero otherwise. An important
disadvantage of class B operation is cross-over distortion.
Class AB operation eliminates this disadvantage. In a class AB
circuit, the transistors are never completely turned off. Here,
another equation is chosen to establish the relation between

and . Often, the geometric mean function is used,
which can be implemented by the circuit shown in Fig. 10.
Thus, and are described by

(39)

Another possibility is the harmonic mean. This function has
the advantage that and always remain larger than .
Thus, the transit frequencies of the transistors of the splitter
maintain a certain minimum value [44].

As class AB operation can increase the DR of a TL filter,
the noise behavior of the current splitter shown in Fig. 10 is
very relevant.

The output current of the splitter equals the difference of
and . Looking at the node at which the input current source

Fig. 10. Geometric mean current splitter in the presence of noise.

is connected, it is clear that the output current equals,
irrespective of the noise sources. This means that the splitter
itself does not add any noise. The noise sources present in the
TL loop equation of the geometric mean circuit only result in
common-mode noise in and , which is irrelevant. In
many circuit implementations, additional current mirrors are
used in order to supply and to the subsequent signal
paths. The noise contribution of these current mirrors can be
decreased using emitter degeneration resistors.

VI. NOISE IN DYNAMIC TRANSLINEAR CIRCUITS

In this section, the nonlinear noise properties of TL filters
are examined. Although the proposed nonlinear noise analysis
method is, in principle, applicable both to linear and nonlinear
dynamic TL circuits, the analyzes presented in this section
are limited to linear filters. A kind of exception is formed by
the class AB filter introduced by Seevinck in [2], which is
described by a system of nonlinear DE’s.

First, a first-order class A filter and the corresponding class
AB filter are examined. Subsequently, Seevinck’s class AB
filter circuit is treated.

A. Class-A Translinear Filter

Fig. 11 shows a well-known first-order DTL low-pass filter,
operated in class A. It consists of a second-order TL loop, com-
prising – , and a capacitance . The cut-off frequency
can be tuned by the current .

The first, the noise voltages and , representing the
thermal noise of – and – , respectively, have to be
transformed into an equivalent noise current. Due to the pres-
ence of in the TL loop, and cannot be combined into
a single equivalent noise voltage, but have to be transformed
into separate noise currents and in parallel with and

. This yields the TL equation [26]

(40)

The capacitance current can be eliminated using (3). After
Taylor approximation, this yields for the input–output relation,
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Fig. 11. Noise in a translinear first-order low-pass filter.

including first-order noise

(41)

where . This equation shows that
, , and are situated at the input, whereas , , and

are located at the filter output. Hence, two (conditional) noise
spectra and can be distinguished

(42a)

(42b)

The horizontal braces indicate the origin of the different terms.
Subsequently, the spectrum has to be transformed

to the output. In principle, transformation of a time-dependent
spectrum requires two-dimensional Fourier transforms.
However, since the overall filter transfer is linear
time-invariant, the order of transformation of and
the expectation over can be exchanged. In this way,
the Wiener–Kintchine theorem can be used to transform

to the output. Substitution of (3) and using that
[45], the time-independent output

noise spectrum becomes

(43)

Equation (43) shows that intermodulation of the noise
sources with both the input and the output signal occurs, even
when the input signal is located outside the pass-band of the
filter. Consequently, a large out-of-band-signal will deteriorate
the SNR of a small in-band-signal at the output of the filter.
Though, the intermodulation noise is higher for in-band signals
as for out-of-band signals.

Since for a class-A filter, the influence of signal
noise intermodulation is very small. The difference between
the nonlinear calculation and the linear approximation for this
filter equals only 1.51 dB for (maximum signal current
equal to bias current). Hence, for class-A TL filters, the noise
floor in the absence of any signals can be used as a good
estimate of the noise. This is not the case in class-AB filters,
as is shown next.

B. Class-AB Translinear Filter

Class-AB operation can be used to benefit from the DR
improvement provided by companding. A first-order class-AB
filter can, according to Fig. 9, be constructed from two filters
of the type depicted in Fig. 11. Since the input currents
and of both filters in such a configuration are strictly
positive, the DC bias current becomes obsolete and is
omitted. The output currents are denoted by and .
The SNR of the resulting class-AB filter is calculated for the
sine wave input of (26).

As shown in Section V, the current splitter does not con-
tribute any noise. Assuming the current mirrors between the
splitter and two class-A filters do not have a significant noise
contribution, the equivalent output noise power equals two
times the equivalent output noise power of one class-A filter.
Neglecting the influence of , the output noise spectrum

of one class-A filter equals

(44)

where is the DC average value of ,
is the power of and is the transfer function of
the filter.

The noise floor in class-AB filters increases due to two
effects. Signal noise intermodulation saturates the SNR,
while an increase of , having a much weaker effect,
increases the noise without causing saturation.

The output SNR for an input signal located in the pass
band can be determined as follows. For such a signal, the
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Fig. 12. DC output level of a geometric mean splitter.

Fig. 13. Signal-to-noise-ratio of a class-AB translinear filter.Idc[a]: filter based on Fig. 11.Idc[b]: filter of Fig. 14.

filter transfer amounts to unity, such that .
Application of a geometric current splitter then yields

(45)

An exact expression for the average value for the sine
wave input, see (26), cannot be computed. However,can
be approximated by

if

if .
(46)

The exact value of and the approximations, (46), are
illustrated in Fig. 12.

The total output noise power of the class-AB filter
equals twice the value found by integration of (44) over

. The (double-sided) noise bandwidth of the filter, equal to
, also applied to and , shown in Fig. 11. For

large values of , the SNR is then given by

SNR (47)

Fig. 13 displays the SNR as a function of, using the
exact value of . For the parameter the values

are used. Further, = 1 A, pF, and
mV. The corresponding cut-off frequency is 612

kHz. Thus, the -axis variable , represents the amplitude
of , normalized to . For low values of , the SNR

increases linearly, by 20 dB per decade. Eventually, it saturates
to a value of 62.1 dB.

As illustrated by Fig. 13, a higher value of
yields a higher noise floor and a lower SNR. A lower value of

decreases the output noise, but also increases the distortion
at a certain input power level. These two effects will have to
be mutually weighed during design.

As follows from (47) the maximal SNR equals

SNR (48)

This results leads to the interesting conclusion that the max-
imal SNR not only increases linearly with the capacitance

, but also with the absolute temperature. This effect
can be explained as follows. On one hand, the shot noise is
independent of the temperature. On the other hand, according
to (3), the capacitance voltage (and current) swings increase
proportional to , which is beneficial with respect to the SNR.
Except for a constant factor, (48) complies with (10), when

, (the lowest collector current in the class-
AB filter), and . For high current levels, where
the base resistance noise dominates, the same conclusion is
reached. In this region, the maximal SNR equals

SNR (49)

The first fraction on the RHS corresponds with (48). The
second fraction is temperature independent, sincehas to
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Fig. 14. Noise in Seevinck’s class-AB translinear filter [2].

be a PTAT current to prevent a temperature dependent cut-off
frequency [1], [2].

Consider as an estimate for the practical up-
per limit of the signal swing. For this modulation index,
and , the filter DR equals
dB, respectively. The differences of dB,
respectively, between the DR and the SNR demonstrates the
beneficial influence of companding.

C. Seevinck’s Class-AB Integrator

Although exhibiting an externally-linear transfer function,
the class-AB integrator proposed by Seevinck in [2], shown
in Fig. 14, is in a way a nonlinear DTL circuit. It implements
two nonlinear DE’s

(50)

Two current sources are added in parallel to the capacitances
to give the circuit the same transfer from to

as the filter shown in Fig. 11.
The most important change with respect to the class-AB

filter treated previously is the addition of the output currents
and to the collector currents of and ,

respectively. This assures all collector currents to be strictly
positive when the circuit is used as an integrator.

The circuit basically comprises two TL loops, the inputs
and of which are obtained from a (geometric mean)

current splitter. The difference of and is the actual
output current . The input–output relation, including first-
order noise

(51)

Calculation of is complicated by and , since these
sources contribute to both the filter input and output. In this
case, the easiest solution is obtained by moving all terms with

, to the RHS, i.e., to the filter input. Since and
are white, it can be shown that they are uncorrelated with
their time derivatives for all time-differences. Using this
observation, it follows that the contribution of to equals

.
Using (50) to substitute for in the expectations and

assuming a symmetrical input signal, we finally arrive at

(52)

Due to its dependence on , evaluation of (52) requires
the solution of the nonlinear DE’s (50). Unfortunately, since
there is no general way of doing so, one has to resort to
numerical approximation, using a circuit simulator, to find

, and .
The output SNR for this filter is depicted in Fig. 13 as a

function of , using the same parameter values that
were used to generate the curves for . For low ratios

, the SNR of the filter of Fig. 14 is slightly lower
than the SNR of the other class-AB filter, while for high ratios
it is higher better.

VII. CONCLUSIONS

Due to their explicit dependence on the exponential charac-
teristic of the transistor, static and dynamic translinear circuits
exhibit a strongly nonlinear noise behavior, even when the
overall current-mode transfer is linear.

To fully appreciate TL technology, noise analysis is of
fundamental importance. However, due to the presence of
signal–noise intermodulation and nonstationary noise, such
analysis cannot be accomplished through standard small-signal
techniques. Instead, a more advanced approach, based on the
large-signal equations, has to be developed. This is not a
trivial task. Most circuit simulators also do not provide such
a nonlinear noise analysis.

This paper presents a method to determine the first-order
nonlinear output noise and signal–noise intermodulation of
static and dynamic TL circuits, using the existing current-
mode analysis methods for these circuits. On the hand of
some generic static and dynamic examples, it is shown how to
calculate the maximal SNR, an important filter specification.
Further, it is shown that the maximal SNR of each TL loop
in a TL circuit is fundamentally limited to the SNR of the
transistor biased at the lowest current. As shown, this finally
causes saturation of the output SNR in class-AB filters for
increasing input power.
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