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Abstract—Signal processing by means of analog circuits offers
advantages from a power consumption viewpoint. A method is
described to implement wavelets in analog circuits by fitting the
impulse response of a linear system to the time-reversed wavelet
function. The fitting is performed using local search involving
an � criterion, starting from a deterministic starting point.
This approach offers a large performance increase over previous
Padé-based approaches and allows for the circuit implementa-
tion of a larger range of wavelet functions. Subsequently, using
state-space optimization the dynamic range of the circuit is op-
timized. Finally, to illustrate the design procedure, a sixth-order
�-approximated orthonormal Gaussian wavelet filter using

-C integrators is presented.

Index Terms—Analog circuits, design methodology, dynamic
range, filters, low power, signal processing, wavelet filters,
wavelets, wavelet transform.

I. INTRODUCTION

T HE wavelet transform [1], [2] is a widely used signal
processing technique that is becoming more and more

common in medical signal processing applications, especially
in cardiac signal processing [3]–[9]. The main advantage of
this technique over the classical Fourier transform is that it
provides combined time and frequency localization, whereas
in the Fourier domain only frequency information is available.
Also, the wavelet transform is more flexibly employed than the
Fourier transform, as it can be tuned to the typical signal mor-
phology and particularities of an application at hand: instead
of having to work with harmonic basis functions, as is the case
for the Fourier transform, a large class of wavelet functions is
available that obey the wavelet admissibility conditions. There
are two forms of the wavelet transform: 1) the discrete-time

Manuscript received October 06, 2009; revised January 07, 2011, April 13,
2011 and June 14, 2011; accepted June 20, 2011. Date of publication August 30,
2011; date of current version January 27, 2012. This work is part of the BioSens
project supported by STW, the Dutch Technology Foundation. This paper was
recommended by Associate Editor A. J. Lopez-Martin.

J. M. H. Karel, R. L. Westra, and R. L. M. Peeters are with the Department
of Knowledge Engineering, Maastricht University, 6200 MD Maastricht, The
Netherlands (e-mail: joel.karel@maastrichtuniversity.nl).

S. A. P. Haddad is with the Faculty of Gama (FGA), University of Brasília,
71405-610 Gama-DF, Brazil (e-mail: sandrohaddad@unb.br).

S. Hiseni and W. A. Serdijn are with the Electronics Research Laboratory,
Delft University of Technology, Delft 2628 CD, The Netherlands (e-mail: w.a.
serdijn@tudelft.nl).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2011.2162381

wavelet transform and 2) the continuous-time wavelet trans-
form, both employing continuous-time wavelet functions. In
this paper, we shall be concerned with the continuous-time
wavelet transform, which involves a moving -inner product
between the signal and the scaled wavelet function, usually
for a continuous range of multi-resolution scales (continuous
dilation). For an in-depth discussion on wavelet transforms the
reader is referred to [2].

In wearable and implantable medical devices, such as pace-
makers, the wavelet transform potentially has a large number
of useful applications [9]. However, such devices impose strict
constraints on the power consumption [10]–[17]. Especially for
the sensing circuit of pacemakers, which is always active and for
which the battery can only be replaced after surgical interven-
tion, power consumption is an important factor. When imple-
menting the discrete-time wavelet transform in a digital fashion,
analog-to-digital (A/D) converters are required. These A/D con-
verters account for a relatively high power consumption, that in-
creases exponentially with the number of bits used by the A/D
converters. From a power consumption perspective, an obvious
alternative is to use analog circuits and to implement the contin-
uous-time wavelet transform instead.

The concept of implementing a single scale of the contin-
uous-time wavelet transform by constructing a linear system,
the impulse response of which matches a time-reversed and
time-shifted Gaussian wavelet function, was introduced in [18]
and the term “wavelet filter” was coined for the first time in [10].
Over the years, this idea has been worked out in more detail,
concentrating on issues related to wavelet approximation [11],
[19]–[21], wavelet filter state-space and wavelet filter topology
optimization [21]–[24] and wavelet filter circuit design [10],
[22], [25]–[27]. In this paper, for the first time, a comprehensive
treatment of how to map any continuous-time wavelet transform
on a low-order wavelet filter topology that is optimized for dy-
namic range, sparsity and sensitivity is presented.

This paper is structured as follows. In Section II, it is ar-
gued how a single scale of the continuous-time wavelet trans-
form can be implemented with a linear system. In Section III,
a novel -approximation approach is presented, which allows
one to obtain an accurate low order system approximation for
many different wavelets, to be used for hardware implemen-
tation. Section IV addresses circuit design issues, such as op-
timization of the dynamic range, the tradeoff between a high
dynamic range and sparsity, and sensitivity. Finally, to illus-
trate the design procedure, a sixth-order -approximated or-
thonormal Gaussian (gaus1) wavelet filter using -C integra-
tors is presented in Section V.

1549-8328/$26.00 © 2011 IEEE
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II. WAVELETS IN ANALOG CIRCUITS

At a given time and scale , and for a given
admissible wavelet function , the value of the continuous-
time wavelet transform of a real signal is defined as the
cross-covariance at lag of that signal and the normalized di-
lated wavelet [2]:

(1)

Typically, an admissible wavelet function is required to
(virtually) have compact support: it effectively vanishes outside
a certain bounded interval. Then the time shift becomes nat-
urally associated with time localization. Also, the spectrum of

typically is bounded, exhibiting a dominant frequency, say
, called the center frequency of the wavelet. Then at the scale

, the center frequency of is given by ; thus,
the scale is naturally associated with this pseudo-frequency.
The scales allow for zooming in on interesting features of the
signal associated with typical frequencies, while maintaining
time localization to a certain extent. For practical implemen-
tation in analog circuits, the wavelet transform is usually com-
puted for continuous values of but only at a few scales of
interest.

When a signal is passed through a linear time-invariant
(LTI) filter, the filter output is well known to be the convolution
of with the impulse response of the filter:

(2)

From (1) and (2) it is immediate that analog computation of
the wavelet transform at a selected (fixed) scale ,
is achievable through implementation of a linear filter with im-
pulse response

(3)

Equivalently, the transfer function of the filter needs to satisfy

(4)

For a given wavelet function this ideal transfer function
will usually be non-rational (so that the associated filter is

infinite dimensional) and non-causal (requiring future values of
the signal to compute the value of the wavelet transform at
a given point in time) but stable (due to the wavelet admissibility
condition). For an application in practice; however, a reasonably
good approximation of may be sufficient to achieve the
intended goals.

For obvious physical reasons we shall only consider the
hardware implementation of finite dimensional, strictly causal,
stable LTI filters of sufficiently low order. Thus, we consider
approximations of by transfer functions that have all their
poles in the left half of the complex plane and which are strictly

Fig. 1. Effect of time-shifting.

proper rational (i.e., the degree of the numerator polynomial is
strictly less than the degree of the denominator polynomial).

Causality of a filter implies that will be zero for nega-
tive , so that any time-reversed mother wavelet which
does not have this property must be time-shifted by some suit-
able value , to facilitate an accurate approximation of its cor-
respondingly time-delayed wavelet transform [22]

(5)

where

(6)

In case is nonzero on the negative -axis, a truncation error
results, which should be kept small. This is illustrated in Fig. 1.
The selection of the time-shift turns out to be a rather delicate
process; see [11]. When is chosen too small, the truncation
error may be too large, exerting a significant decrease of the
overall performance of the approximation. When is chosen
too large, then an accurate needs to remain close to zero for
some time, requiring the implementation of a high-order filter.
This is undesirable, as the complexity of the design increases
with the order of the filter, and so do the physical space required
on the chip and the associated power consumption.

III. -APPROXIMATION OF WAVELET FUNCTIONS

A. Motivation of an -Approximation Criterion

For a selected time-shift , the computation of an accurate
approximation is a nontrivial task in itself, which allows for
various approaches with varying success. In earlier work,
Padé approximation (see [28], [29]) was used to approximate
the Laplace transform of with a strictly proper rational
function ; see [22]. While a Padé approximation is easy
to compute (uniquely) by solving a linear system of equations,
a main disadvantage of this approach is that many well-known
wavelets do not have a known expression for their Laplace
transform. Also, the choice of degrees for a sufficiently ac-
curate Padé approximation is not straightforward and hard to
automate. Only a very limited set of wavelets, including the
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Gaussian wavelet and the Mexican Hat wavelet, could be han-
dled satisfactorily in this way. Note that the Padé approach with
a good fit in the Laplace domain near zero, corresponds to a
good fit in the time domain at infinity (final value theorem) and
hardly constrains the wavelet on its domain of support, often
yielding a poor fit. Requiring a good fit in the Laplace domain
at infinity yields a much better fit for the wavelet on a part of its
support near zero (initial value theorem) but often results in in-
stability. This tradeoff is not handled well by the Padé approach
[11]. In [21], [24], the Padé approximation was implemented
using the so-called CFOS-approach: by using a cascade of
complex first order systems (CFOS), see [30], [31], one may
model a Gaussian envelope of a wavelet function separately
from its oscillatory characteristics. Using this CFOS-approach
the Gabor wavelet and the Morlet wavelet could successfully
be approximated and implemented in hardware. However, this
method is again limited to a small set of wavelets and the filter
order is not easily kept low.

In [11], preliminary results on a novel, more accurate -ap-
proach have been reported. This method proceeds by fitting the
impulse response of a filter directly to a given function
by minimizing the -norm of the error function (for

). Here we present a detailed account of this -approach,
including a methodology which facilitates largely automated ap-
proximation.

To motivate the use of an -criterion to quantify the error
between an approximation and a given (shifted, truncated)
mother wavelet , it is noted that: 1) the value of the wavelet
transform at a given location and scale involves an -inner
product; 2) to compute the wavelet transform on a given scale,
the function is used as a convolution kernel with arbitrary
time-shifts, so that approximation errors for all time instances

have an equal impact on the overall accuracy of the results;
3) due to Parseval’s theorem, -approximation in the time do-
main can be reformulated equivalently as -approximation in
the frequency domain, which allows one to deal with the transfer
function of a wavelet filter directly (cf. [11]). In fact, it holds that

(7)

see [20, Thm. 4.4.1] so that the -norm of the error
can be used to establish an a priori bound on the absolute

accuracy of the wavelet transform.
In practice, it may happen that no analytical expression is

available for the function , which is the case, e.g., for the
Daubechies wavelets and many other commonly used classes
of wavelets. Then, by sampling with a small sampling time
over an interval which is sufficiently large, the -criterion of
fit may be conveniently approximated by a nonlinear sum of
squares, for which numerical optimization software is widely
available. We have used this technique to obtain the numerical
results presented in this paper.

It is noted that a well-known drawback of the use of non-
linear least squares techniques is the possible existence of local
(non-global) optima. An iterative local search optimization rou-
tine may terminate in such a local optimum and as a rule there

is no guarantee whether a global optimum will be found, nor
will it be possible to ascertain global optimality once a global
optimum has actually been found. It has been found that lower
order systems sometimes give better results for this very reason,
and different local search algorithms provide different local op-
tima [20]. A large amount of different starting points can yield
different local optima and thus can be used to find better so-
lutions, at a relatively high computational cost. The choice of
a clever initial point [19] may have the same effect, but with
considerably lower computational costs. A procedure to find
a good initial point for the present application is discussed in
Section III-C.

B. Parameterization

To minimize the -norm of the error function
numerically, a parameterized class of functions must be speci-
fied over which to optimize for . From the theory of linear
systems, see [32], it is known that any strictly causal LTI filter
of finite order can be represented as a state-space system

, corresponding to a system of associated first-order
differential equations:

(8)

(9)

Here, the filter input is denoted by (in the application at
hand this concerns the signal ), the output is denoted by
(which represents the wavelet transform of at a given scale)
and denotes the internal -dimensional state vector at
time (which may or may not have a direct physical or electrical
interpretation, depending on the possible structure of , , and

). In this general black-box description, the associated impulse
response and its Laplace transform (the transfer function)

of the system are given by

(10)

(11)

For the generic situation of stable systems with distinct poles,
the impulse response is a linear combination of damped
exponentials and exponentially damped harmonics. For low-
order filters, this makes it possible to propose an explicitly pa-
rameterized class of impulse response functions among which to
search for a good approximation of ; see also [11], [19]. As
an example, a useful class of impulse responses of order
consists of linear combinations of a single damped exponential
and two exponentially damped harmonic pairs:

(12)

Note that wavelets are typically oscillatory functions which ef-
fectively have compact support, so that any good approximation
necessarily requires a number of damped harmonics. To have
stability the parameters , and must all be strictly nega-
tive.
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For the purpose of (integrated) circuit design, it is useful to
have an explicit state-space representation too. For

of the form (12) such a representation is provided by

(13)

For other values of the order , similar parameterizations are
easily generated in an analogous fashion.

Given the explicit form of the wavelet and the param-
eterized class of functions , the (squared) -norm of the
error function can now be minimized in a straightfor-
ward way using standard numerical optimization techniques and
software. When required (e.g., when the wavelet is only avail-
able in sampled numerical form), one may employ a discretized
problem setting obtained by sampling both the wavelet and the
impulse response with a suitably small sampling time. The neg-
ativity constraints on , and which enforce stability are
easily handled by most optimization packages.

One important admissibility property of wavelets that was
undiscussed so far, is that it needs to have at least one vanishing
moment. This comes down to the requirement that the integral
of the wavelet function equals zero:

(14)

If the approximation to does not share this property,
this will generally cause an unwanted time-varying bias in the
approximated wavelet transform of . In fact, if no special
care is taken, this is likely to happen in a situation where a trun-
cation error occurs. Therefore, the additional constraint needs to
be imposed for the approximation to have a zero integral.
In terms of the transfer function , this condition is equiva-
lently captured by the constraint

(15)

which expresses that the filter needs to have a zero at .
For the explicit parameterization introduced above, in which
is block diagonal, the inverse can easily be determined. As
a concrete example, for the parameterization (12), the following
explicit condition results:

(16)

This condition needs to be passed on to the optimization soft-
ware. If such a nonlinear constraint is not conveniently handled
by the optimization software, one may instead choose to elimi-
nate a parameter to enforce it [20].

C. Finding a Good Starting Point

The possible existence of local optima for the -approxi-
mation criterion, makes that the choice of a starting point may

have a considerable impact on the outcome of a local search op-
timization routine. In [19], an approach was introduced which
aims to find a good starting point quickly. This method employs
standard model reduction techniques to compute a low-order ap-
proximation from an accurate initial high order approximation.
The resulting overall -approximation method can then largely
be automated. It consists of a number of steps, as illustrated in
Fig. 2.

1) Sampling the wavelet
The function is sampled with high resolution over
a sufficiently large time interval, yielding a discrete-time
signal

(17)

where denotes the sampling time and is the total
number of sampling points. This sampled sequence acts as
a highly accurate discrete-time representation of the wave-
form that needs to be implemented as the impulse response

of a linear filter. Choosing the time interval to be
large enough effectively promotes stable approximations
to occur in further computations, in view of the fact that a
wavelet quickly vanishes when becomes large.

2) Computation of a low-order approximation, used as a
starting point for optimization
This involves four steps, each of which are supported by
widely available software packages, such as the Control
System Toolbox of Matlab.
First, a high order discrete-time FIR model is constructed
of which the impulse response coincides with
the sampled sequence. More precisely, it is required that

and in addition
for all . A state-space realization in con-

trollable companion form is convenient here. Typically, in
our set-up, the order of this high-order FIR model equals
about , with .
Second, the high order state-space model is balanced and
truncated, see [33] and [34], to yield a still highly accurate
reduced order discrete-time model. Typically, the order of
this “intermediate order model” is between 50 and 100.
Third, this discrete-time intermediate order model is con-
verted to a continuous-time model, e.g., using the zero-
order hold (ZOH) principle.
Finally, the intermediate order continuous-time model is
reduced with a balance and truncate technique to a desired
low order , typically between 3 and 15. If desired, various
low orders can be tried out and compared and a suitable
low order of a satisfactory approximation quality can be
selected. This is fast, as all the previous steps need not be
repeated.

3) -approximation of the wavelet function
The low-order model obtained in the previous step is used
as a starting point for minimizing the -norm of the error
function under the constraint (15), using an iter-
ative local search optimization technique. To obtain the ini-
tial parameter values, the low-order approximation model
must be cast into the correct state-space form first, which
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TABLE I
NORMALIZED � -ERROR OF VARIOUS APPROXIMATIONS, EXCLUDING THE POTENTIAL TRUNCATION ERROR

Fig. 2. Automated approximation of wavelet functions.

Fig. 3. Approximations of various wavelet functions. The thick gray line cor-
responds to the wavelet function and the thin dashed black line to the impulse
response of the approximating system. The following wavelets were approxi-
mated with specified orders��� and time shifts���. (a) Gaussian����� ����.
(b) Morlet �����������. (c) Mexican Hat �����������. (d) Daubechies 3
����������. (e) Daubechies 7 ��������	�. (f) Coiflet 5 �����������.

is not difficult to achieve. Note that a numerical optimiza-
tion approach to the minimization problem

involves a discretization too, which can be carried
out with a resolution that is different from the resolution
used for sampling in Step 1.

In the procedure for computing a low-order starting point,
we start from an accurate high-order approximation (the FIR
model) which is first reduced in discrete-time, then converted
to continuous-time, and finally reduced in continuous-time to
a desired low order. One cannot convert the initial FIR model
directly to continuous-time, as this involves a logarithmic op-
eration and all the system poles are—by construction—located
at the origin. These poles are discarded and moved away from
the origin in the discrete-time model reduction step, making
the subsequent steps feasible. Of course, any other approach to

compute a good initial approximation can be used to replace
this procedure in the overall scheme.

This -approach allows for the approximation and imple-
mentation of a wide variety of wavelets. In [24], it was discussed
how certain complex wavelets can be implemented and in [20]
various other wavelets are approximated with this approach. Be-
sides the Gaussian wavelet, also the Morlet wavelet and the
Mexican Hat wavelets have been approximated, all of which are
of interest for ECG processing; see [35]–[38]. The current ap-
proach also allows for the approximation of wavelets that have
an associated filter bank such as the Daubechies and Coiflet
wavelets. The approximated wavelets are shown in Fig. 3.

In [19] and [20], it is shown that an -approximation of order
4 of a Gaussian wavelet outperforms a Padé approximation of
order 5. The adopted -approximation methodology is capable
of yielding a significant improvement in approximation perfor-
mance together with a further reduction of the approximation
order. To illustrate how well various wavelets are approximated,
the -norms of the approximation errors of various wavelets
are displayed in Table I. Note that a prescribed set of orders was
used for all the wavelet approximations.

Accuracy does not always increase with the order. One of
the reasons is that the configuration, i.e., the ratio between the
number of exponentially damped harmonics and damped ex-
ponentials, may be important, especially when only one deter-
ministic starting point is used. If a local optimum happens to
be nearby, then the optimization may quickly terminate there;
this occurred for the Mexican Hat wavelet, for several orders.
Switching to another local search technique such as a trust-re-
gion reflective search solves this particular problem; see [20],
but then the results for the Daubechies wavelets deteriorate. An-
other way to overcome this problem, at the cost of a longer com-
putation time, is to use multiple random starting points in an area
around the deterministic one.

The -approach to wavelet approximation was compared
with the Padé and CFOS approaches in terms of the mean-
square error (MSE); see Fig. 4. Since not all approaches can
handle all wavelets, the MSE was calculated for the Gaussian
wavelet and for the Morlet wavelet, using several filter orders.
The -approach typically achieves a specified accuracy with a
lower order system than the Padé approach; the CFOS requires a
substantial amount of stages to achieve an accurate approxima-
tion to the Gaussian envelope. For a limited complexity (order
of the filter) the -approach provides the best accuracy.

IV. STATE-SPACE OPTIMIZATION

This section describes the next step towards the implemen-
tation of the wavelet filter, i.e., the definition of its wavelet
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Fig. 4. Order of the filter versus mean-square error for � , Padé and CFOS
approximations. (a) First derivative of Gaussian and (b) Morlet wavelet bases.

filter topology. Since state-space descriptions and their corre-
sponding filter topologies are not unique representations of a
dynamical system, they allow the designer to find an imple-
mentation that fits the requirements best, e.g., easy coefficients,
a prescribed filter topology, or maximum dynamic range. The
state-space description is transformed into the desired form by
state-space transforms or similarity transforms. In the context
of low-power, low-voltage analog integrated circuits, the most
important requirements are dynamic range, sensitivity and
sparsity, all of which will be treated in the subsections that
follow.

A. Dynamic Range Optimization

A system’s dynamic range is essentially determined by the
maximum processable signal magnitude and the internally gen-
erated noise. It is well known that the system’s controllability
and observability gramians play a key role in the determination
and optimization of the dynamic range [39], [40].

The controllability and observability gramians are derived
from the state-space description. If is stable, the controlla-

bility and observability gramians are the unique, sym-
metric solutions of the following two Lyapunov equations:

(18)

(19)

where , and are the state, input, and output matrices of
the state-space description, respectively.

In [23], it is shown that, in order to maximize the dynamic
range of the system, one should minimize the objective func-
tional that represents the relative improvement of the dy-
namic range and contains all parameters that are subject to ma-
nipulation by the designer. The objective functional is given by

(20)

where and are the main diagonal elements of and ,
respectively, is the absolute sum of the elements
on the th row of , and is the capacitance in integrator .

The optimization of employs state-space transforms,
also known as similarity transforms. A similarity (coordinate)
transform, involving an invertible transformation matrix , de-
fines a new state vector

(21)

Consequently, the transformation results in new system ma-
trices, given by

(22)

Using the above state-space transformation, the controllability
and observability gramians can be optimized as they become

(23)

where .
As the dynamic range of a circuit is defined as the ratio of

the maximum and the minimum signal level that it can process,
optimization of the dynamic range is equivalent to the simulta-
neous maximization of the (distortionless) output swing and the
minimization of the overall noise contribution [41].

Thus, the first optimization step boils down to finding a simi-
larity transform, such that the controllability gramian of the new
system becomes a diagonal matrix with equal diagonal entries.
Such a transform is given by

(24)

where is the eigenvector matrix of and is a diagonal
matrix, the diagonal entries of which are the eigenvalues of .

In the second step of the optimization procedure, the system
is optimized with respect to its noise contribution. While pre-
serving the result of the first optimization step, it is possible to
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rotate the state space, such that the observability gramian be-
comes a diagonal matrix as well. The transformation of ,
leading to , is defined as

(25)

where is the eigenvector matrix of .
Finally, profiting from the well-known fact that the relative

noise contribution of an integrator decreases when the capac-
itance and bias current increase, we match an optimal capaci-
tance distribution to the noise contributions of each individual
integrator (noise scaling), i.e., the diagonal entries of , ac-
cording to [23]

(26)

being the total capacitance of the wavelet filter.

B. Sparsity Versus Dynamic Range Comparison

The drawback of a dynamic-range optimal system is that its
state-space matrices are generally fully dense, i.e., all the entries
of the , , and matrices are filled with nonzero elements.
These coefficients will have to be mapped on circuit compo-
nents, and will result in a complex circuit with a large number of
interconnections. For high-order filters it is therefore necessary
to investigate how a realization of the desired transfer function
having sparser state-space matrices would compare to the one
having maximal dynamic range.

By definition, a sparse matrix is a matrix populated primarily
with zeros. For a less complex circuit, it is possible, for instance,
to transform the state-space matrix by a similarity transforma-
tion matrix in order to reduce the number of non-zero coef-
ficients in . One important characteristic of is that, consid-
ering a system of order , has degrees of freedom. Thus,
the system can be transformed in several ways, achieving the
desired sparsity requirements.

In order to compare the dynamic range versus the order of
the system, Fig. 5 illustrates the of different state-space
descriptions applied to a Morlet wavelet filter transfer function.
Note that for lower order, all state-space representations present
a similar performance, with values close to each other,
whereas for higher order, the ’s of some representations de-
viate too much from the optimal case. Hence, dynamic range op-
timization becomes a very important requirement in high-order
analog wavelet filter design. As one can see, the orthonormal
ladder state-space representation [42] is very close to the op-
timal representation, even for high-order systems.

C. Sparsity Figure-of-Merit (SFOM)

In order to define the sparsity property versus dynamic range
for a specific state-space description, we derive a new figure-of-
merit. The static power consumption of an analog active filter is
basically determined by the bias currents inside the filter. From
a state space representation one can define the total bias cur-
rent by where represents the number of nonzero coef-
ficients presented in matrices , and and is the current

Fig. 5. � versus order of a Morlet wavelet filter for different state-space
representations.

necessary to implement each coefficient.1 As a result, the static
power consumption of a filter can be approximated as

(27)

On the other hand, the dynamic power dissipation of a th
order filter can be expressed in terms of its dynamic range, DR,
and yields [23]

(28)
where is the order of the filter, is the operating frequency,
is Boltzmann’s constant, is the absolute temperature, is the
noise factor of the integrator, which is fundamentally greater or
equal than 1/2, is the maximum output amplitude, and
is a nonlinear monotonically increasing function of the fraction
of time that the integrators are allowed to clip and is repre-
sented by . represents the trace of a
matrix and is the state weighing matrix. is
invariant under a similarity transformation and is thus beyond
the designer’s control.

Dividing by we end up with

(29)

where is defined by the circuit
implementation, while can be controlled at the
system level. So, in order to design an optimal state-space
description with respect to dynamic range and sparsity, we
present a new figure-of-merit, given by

(30)

1For simplicity, it is assumed that every coefficient to be implemented entails
a current consumption of �
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TABLE II
NUMBER OF NONZERO COEFFICIENTS � IN �, �, AND �

Fig. 6. SFOM versus order of the Morlet wavelet filter for different state-space
representations.

From (30) one can see that the optimal case is the one with
minimum SFOM, i.e., the system which presents a good sparsity
(large number of zeros) while preserving a low (i.e., a large
dynamic range).

The number of nonzero coefficients for different state-
space representations is given in Table II.

Finally, several SFOMs versus the order of the system
are plotted in Fig. 6. As expected, the orthonormal ladder
state-space representation presents the best performance (lower
SFOM), mainly due to its excellent sparsity and its near-op-
timum .

D. Sensitivity

To accurately realize a transfer function using analog inte-
grated circuits, the circuit components of the filter must match
closely, and the sensitivity of the transfer function to the values
of the filter’s components must be low. This sensitivity depends
on the filter network, and thus depends on the state-space rep-
resentation. Hence, the sensitivity of the transfer function of a
particular state-space representation is an important criterion for
the comparison of different network realizations.

The sensitivity of the transfer function to the component
values of a state-space realization depends on the sensitivity to
the entries of the state matrices , and . Here we will con-
sider an absolute sensitivity measurement, which can be used to
establish the relationship between the absolute changes ,

and [43].

The absolute sensitivities of with respect to variations
of the coefficients are given by [39]

(31)

where is the unit vector with th element unity. In the case of
a statistical derivation analysis, the frequency dependent vari-
ances of the transfer function are defined as

(32)

where the variations of the coefficients have been considered
statistically independent. Integrating the transfer function vari-
ances over the whole frequency range, new sensitivity measures
related to the observability and controllability gramians have
been defined in [39], and are given by

(33)

where , , and represent the sensitivity of the matrices
, , and to their coefficients, respectively. Finally, the total

sensitivity measure, , of a transfer function with respect to
the state-space representation matrices can be obtained as

(34)
The maximum sensitivity measure (worst case sensitivity),

considering , can be
seen in Fig. 7 as function for the order of the Morlet wavelet
filter, for different state-space representations. One can note that
the optimal DR state-space representation will also be optimal
with respect to sensitivity. The Schur and Hessenberg forms
decomposed from an optimal system also present an optimal
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Fig. 7. Sensitivity versus order of the Morlet wavelet filter for different state-
space representations.

sensitivity because the orthogonal transformation involved does
not affect the sensitivity. The orthonormal ladder structure has
a reasonably low sensitivity to coefficient mismatch, close to
the optimal case. Both (controllable and observable) canonical
forms have the worst sensitivity measures for high order filters,
as expected.

E. Dynamic Range-Sparsity-Sensitivity Figure-of-Merit
(DRSS)

To conclude the discussion on state-space descriptions we
will present a new figure of merit that expresses the correla-
tion of dynamic range, sparsity, and sensitivity parameters. In
order to relate these three aspects, we introduce the dynamic
range-sparsity-sensitivity figure-of-merit (DRSS), given by

(35)

As one can see from (35), the objective functional, , gives
the relative deterioration of the dynamic range, is related
to the sparsity of the system and defines the sensitivity of
matrices , , and with respect to their coefficients. Fig. 8
shows the DRSS figure-of-merit versus the order of the system.
Again, the orthonormal ladder structure presents the best perfor-
mance (minimum DRSS) compared to the other state-space de-
scriptions. Thus, we can state that the orthonormal ladder struc-
ture is the optimal state-space description for a system design
where the most important requirements are the dynamic range,
sparsity, and sensitivity. Although the state-space description
obtained from the optimization procedure in Subsection A gives
us the optimal representation with respect to dynamic range and
sensitivity, its matrices are fully dense, and consequently, its
SFOM and DRSS performances are relatively poor.

In this section, we presented the description and a comparison
of several state-space representations. The analysis was based
on dynamic range, sparsity and sensitivity properties, which are
the most relevant aspects for an ultra low-power analog dynamic
system. From the two new figures-of-merit described above,
viz., the SFOM and DRSS, we concluded that the orthonormal
ladder structure [42] is the optimal state-space representation,
and, therefore, will be used for the design of continuous-time
analog wavelet filters in the next section.

Fig. 8. DRSS figure-of-merit versus order of the Morlet wavelet filter for dif-
ferent state-space representations.

V. ULTRA LOW-POWER CONTINUOUS-TIME ANALOG

WAVELET FILTER DESIGN

An th-order linear differential equation, which describes a
filter of the same order, can be implemented by means of in-
tercoupled integrators. An (on-chip) integrator is an electronic
circuit that realizes the transfer function , where is im-
plemented by a (trans)conductor (which converts voltage into
current), and the integrating component is usually realized
by a (trans)capacitance (integrating current into voltage). There-
fore, integrators can be seen as the main building blocks of filter
topologies, and, consequently, we will use an ultra-low-power
integrator topology to implement the desired wavelet filter.

The trend towards ultra low-power integrated contin-
uous-time filters has increased the interest in new design tech-
niques for analog integrated filters. The current state-of-the-art
design approaches for such filters are transconductance ampli-
fier-capacitor ( -C) and dynamic translinear (log-domain)
methods. In the field of medical electronics, active filters with
large time constants are often required to attain low cutoff-fre-
quencies, in the Hz and sub-Hz ranges. In order to avoid large
capacitor values on chip, very low transconductances should
be implemented to design very low cutoff-frequency filters.
Therefore, a -C structure is a natural choice to implement
the integrators, as long as very-low transconductance values,
typically a few nA/V or less, can be achieved.

The filter design example that follows is based on an
orthonormal ladder structure and employs the nA/V transcon-
ductor described in [27]. It is based on the use of CMOS
transistors operating in the strong-inversion triode region
(SI-TR). As shown in [44], transistors kept in SI-TR benefit
from a lower ratio than the ones operating in saturation
(active) or weak-inversion regions. This means that, for a
particular bias current , the SI-TR transconductor presents
the lowest value. In addition, triode-based transconductors
have better linearity performance than transconductors with
transistors operating in saturation.

The SI-TR transconductor is shown in Fig. 9. It should be
stated here that in this circuit not all transistors are in the triode
region. Only and are biased in the strong-inversion
triode region. and operate in weak inversion triode.
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Fig. 9. Schematic of the nA/V CMOS triode-transconductor [27].

The other transistors are operating in the weak inversion satura-
tion region.

Input transistors have their drain voltages reg-
ulated by an auxiliary amplifier that comprises the current con-
veyor , and , and bias cur-
rent sources and . A low-voltage cas-
code current mirror comprising and
provides a single-ended output. Internal voltages , , and

are derived from the bias circuit shown in Fig. 10, which
is based on the one presented in [44]. The bias generator is
structurally alike the transconductor so that the external voltage

is reflected onto the drain of . Referring
to , one can define the of the transconductor as

(36)

with . In order to obtain a -C filter realiza-
tion using the proposed integrator, we must be able to map the
corresponding filter coefficients on the respective values.
From the transconductance definition in (36), one can notice
that we may vary the value of by changing the drain-source
voltage or, alternatively, (by the aspect ratio )
of transistors and .

In Fig. 11, the Gaussian wavelet (gaus1) has been approxi-
mated using the approach, with the impulse response of the
sixth-order transfer function

(37)

The time shift involved equals 2.0, with a corresponding
truncation error of 0.0238. The approximation error of the
(time-reversed, shifted) truncated wavelet function by the im-
pulse response is 0.0132, yielding a total error of 0.0272.

Fig. 10. Circuit diagram of the bias generator.

Fig. 11. Sixth-order � approximation of the gaus1 wavelet with shift � �

���.

Since the wavelet is normalized to unit energy, this can be re-
garded as a maximal 2.72% error for the wavelet transform; see
also (7). Using the state-space realization method of [42] the fol-
lowing matrices were obtained, as shown in (38) at the bottom
of the next page.

To implement this filter, we chose to scale by a factor of 5
(to bring all nonzero entries into a comparable numerical range)
and we set the last two entries of to zero (to reduce the total
number of transistors and thus chip area and power consumption
required for the implementation). This increases the total
error to 4.07%.

The block diagram of the wavelet filter is presented in Fig. 12.
The values of and the total capacitance required to imple-
ment the transfer function in (37) are also shown in Fig. 12.
The sensitivity of the total error of the wavelet filter transfer
function on each of the individual values of used in this
implementation, is shown in Table III. There, the total error
is shown (as a percentage) which results when different scaling
factors are applied to the individual values. We conclude
that for small inaccuracies the total error hardly increases. In
practice, the impact of such deviations on the wavelet transform
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Fig. 12. Block diagram of the wavelet filter.

TABLE III
� ERROR OF THE WAVELET IMPLEMENTATION FOR INDIVIDUAL SCALING OF

THE COEFFICIENTS � BY FACTORS 0.95, 0.98, 0.99, 1.01, 1.02 AND 1.05.
THE � ERROR OF THE REFERENCE IMPLEMENTATION IS 4.07%

will also depend on the signal being processed and is usually
smaller.

The wavelet -C filter has been simulated using AMIS
0.35- m CMOS transistor models. Fig. 13 shows the simulated
and approximated impulse responses of the wavelet filter for

mV. An excellent approximation to the ap-
proximated first Gaussian wavelet (gaus1) confirms the perfor-
mance of the -C filter.

Table IV presents the simulated filter specifications. The total
filter current consumption ranges from 25 nA to 183 nA, de-
pending on the scale, while operating from a 1.8-V supply. The
figure-of-merit (FOM) commonly used for comparison of dif-
ferent filters and defined as , in which

is the total power consumption of the wavelet filter, is the
order of the filter and DR is the filter’s dynamic range [for a
1% total harmonic distortion (THD)], has been given as well. It
must be noted though that, although the filter approximation and
filter topology have been optimized for power consumption and
dynamic range, due to the inherently larger amount of noise gen-
erated in the triode transconductor, the FOM is relatively large.

(38)
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Fig. 13. Simulated and � -approximated impulse response.

TABLE IV
FILTER SPECIFICATIONS

Better DRs and FOMs are possible using transconductors or in-
tegrator circuits based on the use of transistors that operate in
weak-inversion saturation. This is, however, beyond the scope
of this paper.

Finally, in order to implement a wavelet transform, we need
to be able to scale and shift in time (and, consequently in fre-
quency) the gaus1 function. By changing the values of
accordingly we implement different scales, while preserving
the impulse response waveform, as one can see in Fig. 14(a).
Fig. 14(b) illustrates the frequency response (magnitude only)
for 4 dyadic scales with center frequencies ranging from 6 Hz
to 46 Hz for varying from 10 mV to 80 mV, respectively.

VI. CONCLUSION

The approximation approach for fitting the impulse re-
sponse of a linear system performs markedly better than earlier
Padé based methods, in particular at the beginning of the signal.
The criterion offers a conceptual appeal for the problem at
hand. With the current methodology a wide range of contin-
uous-time wavelets can be implemented in an uniform manner.
For the optimization a local search technique is employed and
a procedure has been presented to find a suitable starting point
that helps to avoid that the optimization terminates in a poor
local optimum. Further use of randomness in the vicinity of this
starting point may further decrease the chance of finding a sub-
optimal solution.

After a suitable low-order linear system has been designed,
state-space optimization is employed to optimize the dynamic

Fig. 14. Wavelet filter scaling by changing � . (a) Impulse response. (b)
Frequency response (magnitude only).

range of the system, without sacrificing too much sparsity and
guarding the sensitivity of the system in the process. In order
to come to a well balanced tradeoff the dynamic range-sparsity-
sensitivity figure-of-merit is introduced. From this we deduced
that the orthonormal ladder structure is the best candidate for
the design of continuous-time analog wavelet filter topologies.

Finally, to illustrate the design procedure presented here,
an -approximated orthonormal “gaus1” wavelet filter using

-C integrator building blocks was presented. Simulation
results on an actual circuit design confirm that indeed various
scales of the wavelet transform can be implemented in an
analog fashion consuming little power.
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