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a b s t r a c t

Although most of its popular applications have been in discrete-time signal processing for
over two decades, wavelet transform theory offers a methodology to generate continuous-
time compact support orthogonal filter banks through the design of discrete-time finite
length filter banks with multiple time and frequency resolutions. In this paper, we
first highlight inherently built-in approximation errors of discrete-time signal processing
techniques employing wavelet transform framework. Then, we present an overview
of emerging analog signal processing applications of wavelet transform along with its
still active research topics in more matured discrete-time processing applications. It is
shown that analog wavelet transform is successfully implemented in biomedical signal
processing for design of low-power pacemakers and also in ultra-wideband (UWB)
wireless communications. The engineering details of analog circuit implementation for
these continuous-time wavelet transform applications are provided for further studies.
We expect a flurry of new research and technology development activities in the
coming years utilizing still promising and almost untapped analog wavelet transform and
multiresolution signal representation techniques.

© 2009 Elsevier B.V. All rights reserved.
1. Historical perspective and current status

Multiresolution representation of image and video has
always generated an interest in vision research due to the
spectral properties andmodels of the human visual system
(HVS). Burt andAdelson proposed their pyramid decompo-
sition algorithm for multiresolution coding of image sig-
nals [1]. Their pioneering work opened the gate for a new
image coding technique where better frequency localized
subband transforms found their use as an alternative to
the widely used discrete cosine transform (DCT) coding
[2–4]. On the same track, Mallat looked into the continu-
ous-time discrete wavelet transform as a multiresolution
signal decomposition technique and its interconnections
to discrete-time filter banks in his doctoral dissertation [5].
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Independently, Daubechies elegantly formalized the
theoretical linkage, first brought up by Mallat, between
finite support orthonormal wavelet transform basis and
two-band perfect reconstruction quadrature mirror fil-
ter (PR-QMF) bank in her seminal paper published in
1988 [6]. While Goupillaud, Grossmann, Morlet and other
researchers in Europe made their early contributions,
Daubechies’ celebrated paper was the most significant
starter for wavelet related research activities in the United
States [7–9]. The New Jersey Institute of Technology
Wavelets Symposium and the NSF CBMS Conference on
Wavelets in 1990 [10,11] were the first two technical
conferences in the Unites States where Signal Processing,
Mathematics and other research communities shared the
same venues for interdisciplinary exchanges and cross-
fertilization have taken place.
Most of the relevant early work in signal processing

field was to show and emphasize the theoretical inter-
connections and linkages between wavelet and subband
transforms proven by Daubechies [6,12]. There were other
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research contributions that offered filter bank solutions
that lead to the design of compactly supported orthonor-
mal wavelet bases. On the other hand, the theory of
wavelet transforms were better understood by signal pro-
cessing engineers and several tutorial papers on the subject
published in the literature. A number of well written early
research monographs, lecture notes and edited books on
wavelet transforms and multiresolution signal processing
and filter banks were published [13–15]. Then, there were
many good quality papers and books on wavelet and sub-
band transforms, and their applications published in the
signal processing literature.
In addition to highlighting some novel implementation

and applications of analog wavelet transforms, this review
paper will describe wavelet transform approximation
errors inherent in discrete-time signal processing and also
some of the principle developments in wavelet theory for
analog signal processing.
One of the important developments in the construc-

tion, design, and implementation of wavelet (multiscale)
transforms is the design of geometrically-oriented two-
dimensional (and higher) transforms. For example, start-
ing with the steerable pyramid and continuing with
the curvelet, contourlet, and shearlet, dual-tree complex
wavelet transforms and wave atoms. These are especially
important because some of the popular applications of
multiscale transform are in image processing, for which
these transforms make a substantial difference. In ad-
dition, these years have seen many advances in digital
filter bank theory, for example in parameterizations, direc-
tional filter banks, and others. Additionally, the frequency
domain design and FFT-based implementation of wavelet
transforms has received new attention in the recent lite-
rature, for both one-dimensional and multidimensional
non-separable geometrically-oriented transforms, because
this approach overcomes limitations of FIR-filter-based
designs. For example, using an FFT-implementation, or-
thonormal dyadic discrete wavelet transforms with sym-
metric filters and symmetric boundary extensions can be
implemented for any signal length, including odd-lengths.
In contrast, the conventional orthonormal FIR-convolution
implementation cannot be simultaneously orthonormal
and symmetric (excepting the Haar transform) and is fur-
thermore usually implemented for signals whose lengths
are powers of two.
One of the many active application areas of wavelet

transform has been of denoising. The state-of the-art has
progressed significantly over the last 20 years. For appli-
cations of denoising, the noise is rarely entirely Gaussian
nor signal independent. Therefore, signal processingmeth-
ods that can be applied to realistic scenarios are of con-
tinuing interest. Wavelet-based algorithms have also been
developed for the problem of deconvolution. Some decon-
volution and denoising algorithms can be unified into the
framework of iterative thresholding. This approach has been
proven to converge for certain problem formulations to a
unique minimizer, and this theory serves as a foundation
basis for further developments.
For many years the notion of sparsity been central in

the motivation and effectiveness of wavelet transforms for
compression, denoising, etc. Recently, important results
regarding sparsity and L1-norm minimization have been
discovered and are fueling ongoing research activities.
A recent issue of the IEEE Signal Processing Magazine is
dedicated to Compressed Sensing [16], a sparsity-based
approach to reduce the number of requiredmeasurements
of signal.
Some of these discrete-time signal processing applica-

tions of wavelet transforms are further discussed in Sec-
tion 4 of the paper.
As a multiresolution signal analysis technique, the

wavelet transform offers the possibility of selective noise
filtering and reliable parameter estimation, and therefore,
can contribute efficiently to morphological analysis. For
this reason wavelets have been extensively used in
biomedical signal processing, mainly due to the versatility
of the wavelet transform tools. Signal analysis methods
derived from wavelet analysis carry large potential to
support a wide range of biomedical signal processing
applications including noise reduction, feature recognition
and signal compression.
In implantable medical devices, such as pacemakers

and implantable cardio defibrillators, power consumption
is a critical issue due to the limited energy density and
the longevity of currently available portable batteries. This
implies that the design of such devices has to be optimized
for very low-power dissipation. Due to the great relative
power required for the analog-to-digital conversion and its
marginal improvement in power efficiency over the years,
it is predicted that the implementation of a fully digital
wavelet signal processor in implantable pacemakers will
not be feasible for several decades to come. For this
reason, a method for implementing wavelet transform
using continuous-time analog circuitry was proposed in
Ref. [17], based on the development of ultra-low-power
analog integrated circuits that implement the required
signal processing, taking into account the limitations
imposed by an implantable device.
The implementation of wavelet transform in an analog

fashion is equivalent to the implementation of a filter
whose impulse response is the desired (reversed) wavelet
function. Hence, wavelet transform can be implemented
by means of analog filters and filter banks. In implantable
medical devices, minimization of the power consumption
for a guaranteed performance reduces down to four
important design steps as follows,

1. minimization of the total number of wavelet scales
required, e.g., by introducing so-called multi-wavelets
[18];

2. minimization of the order of thewavelet filter, i.e., find-
ing a suitable approximation to the desired wavelet by
means of a low-order rational transfer function [19];

3. optimization of the wavelet filter topology, i.e., finding
the optimal state–space description implementing the
wavelet filter transfer function [17,20]; and

4. optimizing the elementary wavelet filter building
blocks, viz. the integrators.

Other applications that benefit from implementation of
wavelet transform by means of analog circuitry are those
that deal with high frequencies as required in portable
andwearable wireless communication devices, as here the
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restricted power consumption precludes the use of high-
speed analog-to-digital and/or digital-to-analog convert-
ers. Examples of this kind can be found in ultra-wideband
transmitters and in cognitive radio applications [21–23].

2. Discrete wavelet transform

2.1. Introduction

The wavelet transform maps the function f (t) in
L2(R) to another signal Wf (a, b) in L2(R2) where (a, b)
are continuous, and called scaling and shift parameters,
respectively. Although short time Fourier transform (STFT)
decomposes a signal into a set of equal bandwidth basis
functions in the spectrum the wavelet transform provides
a decomposition based on constant-Q (equal bandwidth on
a logarithmic scale) basis functions with improved multi-
resolution characteristics in the time–frequency plane.
Moreover, the wavelet parameters (a, b) are discretized in
such a way that the orthogonality is still satisfied and the
transform is performed on a grid within the continuous
(a, b) plane.
We are going to present the fundamentals of wavelet

transform, its continuous and discrete kinds for transform-
ing continuous-time signals and implementation issues
arise when we use them in digital signal processing appli-
cations.

2.2. Continuous wavelet transform of continuous-time (ana-
log) signals

The mother wavelet or wavelet kernel ψ(t) along with
the continuous scaling and shift parameters (a, b) lead us
to the definition of wavelet transform basis in the time and
frequency domains as follows [6]

ψab(t) =
1
√
a
ψ

(
t − b
a

)
↔ Ψab(Ω) =

√
aΨ (aΩ)e−jbΩ . (1)

We can now define the continuous wavelet transform of
continuous-time (analog) f (t) as

Wf (a, b) = 〈f (t), ψab(t)〉 =
∫
+∞

−∞

f (t)ψab(t)dt (2)

where the wavelet transform satisfies the invertibility
conditions and the signal is recovered back from its
wavelet coefficients as defined [6]

f (t) =
1
Cψ

∫
+∞

−∞

∫
+∞

0

dadb
a2
Wf (a, b)ψab(t) (3)

with the requirement Cψ =
∫
+∞

0
|Ψ (Ω)|2

Ω
dΩ < +∞ that

implies zero-mean mother wavelet function as Ψ (0) =∫
+∞

−∞
ψ(t)dt = 0. Note that themotherwavelet is basically

the impulse response of a continuous-time band-pass filter
that decays at least as fast as |t|1−ε in time. Faster decay
within this context implies better time localization of f (t).
The continuous wavelet transform is not very practical

and also quite redundant. Therefore, its continuous scaling
and shift parameters (a, b) are discretized in discrete
wavelet transform as defined in the next section.
2.3. Discrete wavelet transform of continuous-time (analog)
signals

The continuous wavelet transform parameters (a, b)
are sampled to reduce the redundancy and to make the
wavelet transform more practical. Let us define the sam-
pling grid a = am0 , b = nb0a

m
0 and we can define the dis-

crete wavelet transform basis as [6]

{ψmn(t)} = a
−m
2
o ψ(a−m0 t − nb0) m, n ∈ Z . (4)

If the set {ψmn(t)} is complete for someψ(t), a, and b, then
they are called affine wavelets. Therefore, we can express
any f (t) ∈ L2(R) in the superposition of

f (t) =
∑
m

∑
n

dm,nψmn(t) (5)

where the discrete wavelet transform coefficients are
defined as

d(m, n) = dm,n = 〈f (t), ψmn(t)〉

=
1

am/20

∫
f (t)ψ(a−m0 t − nb0)dt. (6)

Such complete wavelet transform sets {ψmn(t)} are called
frames. Although they are complete they are not a basis
yet since they do not satisfy the Parseval theorem. One can
design a tight and exact frame leading to an orthonormal
basis in L2(R) and satisfying∫
ψmn(t)ψrs(t)dt =

{
1, m = r, n = s
0, otherwise

}
. (7)

Note that these wavelet functions are orthonormal in
both indices. Moreover, an orthonormal discrete wavelet
transform is used to decompose a continuous-time signal
into its wavelet basis functions.
Similarly, the complementary basis of discrete wavelet

transform called scaling functions of multiresolution anal-
ysis also satisfy the following orthonormality condition
within the same scale [6]∫
φmn(t)φms(t)dt = δn−s (8)

where for a0 = 2 and b0 = 1 we can define the scaling
function set as

{φmn(t)} = 2−m/2φ(2−mt − n). (9)

Moreover, we can obtain the scaling coefficients of f (t)
through the projection

c(m, n) = cm,n = 〈f (t), φmn(t)〉

=
1
2m/2

∫
f (t)φ(2−mt − n)dt. (10)

The orthonormal wavelet and scaling bases jointly satisfy
their complementary basis property as expressed∫
ψmn(t)φrs(t)dt = 0 for ∀m, n, r, s. (11)

It is noted that one must use infinitely many scales in
the case of representing f (t) in terms of discrete wavelet
functions only as shown in Eq. (5). In contrast, we can
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express f (t) in a finite number of resolutions if we jointly
utilize the scaling and wavelet basis functions as follows

f (t) =
+∞∑
n=∞

cL,n2−L/2φ
(
t
2L
− n

)

+

L∑
m=1

+∞∑
n=−∞

dm,n2−m/2ψ
(
t
2m
− n

)
. (12)

This expression is indeed a combination of a low-pass
approximation to f (t) utilizing the scaling function at
scale L as expressed in the first term and the wavelet
representation of the detail signal or approximation
error given in the latter. This representation is clearly
more efficient than the wavelet representation and also
highlights the significant role of the scaling basis in the
multiresolution signal decomposition framework based on
wavelet transforms.
Note that the wavelet and scaling functions have the

following inter-scale properties [6,14]

ψ(t) = 2
∑
n

h1(n)φ(2t − n)

φ(t) = 2
∑
n

h0(n)φ(2t − n).
(13)

The coefficients {h0(n)} and {h1(n)} are called inter-scale
basis coefficients. Their significance in the theory and
design of wavelet transform is further explained in Sec-
tion 2.4.
The mathematical highlights presented above require

us to design a continuous-time mother wavelet ψ(t)
and its complementary scaling function φ(t) satisfying
the intra-scale and inter-scale orthonormalities defined in
Eqs. (7) and (8) in order to be able to achieve an orthonor-
mal decomposition of a signal f (t) into time and frequency
localized bases functions in multiple and finite resolutions
as shown in Eq. (12). We should emphasize that it would
not be easy without Daubechies’ multiresolution analy-
sis framework that strongly links compactly supported
orthonormal wavelet design problem with the relatively
easier design of a discrete-time, two-band, finite length
(FIR), perfect reconstruction quadrature mirror filter (PR-
QMF) banks. Hence, the design of a compactly supported
mother wavelet and its complementary scaling function in
continuous time startswith designing a discrete-time two-
band, FIR PR-QMF that will be explained in the following
section.

2.4. Two-band FIR PR-QMF and compactly supported or-
thonormal wavelets

It can be shown that the continuous-time scaling func-
tion is obtained from the infinite resolution product of
the discrete Fourier transform of the inter-scale coeffi-
cients {h0(n)} through the inverse Fourier transform de-
fined as [6,14]

Φ(Ω) =

+∞∏
k=1

H0(e
j ω
2k )↔ φ(t) 0 ≤ t ≤ (N − 1)T0

Assume T0 = 1 (14)
where discrete-time Fourier transform (DTFT) of {h0(n)} is
expressed in H0(ejω) =

∑N−1
n=0 h0(n)e

−jωn. Similarly, the
orthonormal wavelet function of compact support is also
obtained from its inverse Fourier transform as shown in

Ψ (Ω) = H1
(
ej
ω
2

) +∞∏
k=2

H0
(
ej

ω

2k
)

↔ ψ(t) 1−
N
2
≤ t ≤

(
N
2

)
T0 Assume T0 = 1. (15)

Note that the sequences {h0(n)} and {h1(n)} are defined
in the time interval 0 ≤ n ≤ N − 1 and have the fol-
lowing relationship H1(ejω) = e−jω(N−1)H0(−e−jω). Now,
if we impose the orthonormality conditions of Eqs. (7) and
(8) on the design of {ψ(t)} and {φ(t)} it turns out that the
inter-scale coefficient sequences {h0(n)} and {h1(n)}must
satisfy the discrete-time domain conditions [6,14]

∑
n

hr(n)hs(n+ 2k) =

{
δ(k) r = s
0, r 6= s
r, s = 0, 1

}
h1(n) = (−1)n+1h0(N − 1− n); N is even.

(16)

These conditions might also be reduced to the correspond-
ing frequency domain properties imposed on H0(ejω) and
H1(ejω)as follows

|H0(ejω)|2 + |H1(ejω)|2 = 1

H0(ejω)|ω=π = H0(ejω)|ω=0 = 0.
(17)

A careful examination of this result and previous dis-
cussions show us that if one wants to design compactly
supported, orthonormal, discrete wavelet and scaling tra-
nsform bases, he should first design a two-band PR-QMF
bank satisfying Eq. (17) and H0(ejπ ) = H1(ej0) = 0,
then plug them into Eqs. (14) and (15) yielding the desired
continuous-time functions [12,14].

2.5. Discrete wavelet transform of discrete-time signals and
approximation errors

Although the continuous and discrete wavelet trans-
forms are both defined for the multiresolution mapping
of continuous-time signals, most of their popular appli-
cations reported in the signal processing literature are
in discrete-time signal processing. In contrast, we high-
light analog implementations of wavelet transform for a
few emerging analog signal processing applications in Sec-
tion 3.Moreover, we also discuss and quantify the inherent
approximation errors below in case one employs a discrete
wavelet transform to process an already sampled discrete-
time signal where its analog counterpart is not known
to us.

2.5.1. Approximation error due to imperfect generation of
wavelet and scaling bases
Theoretically, the generation of mother wavelet and its

complementary scaling functions defined in Eqs. (15) and
(14), respectively, requires infinitely many terms in the
product operations in the frequency domain. In reality,
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Fig. 1a. Approximations to the {φL(t)} scaling functions for 4-tap
Daubechies wavelet filters with various values of L in Eq. (18).

the order of these products is of finite as expressed below
[6,14],

ΦL(Ω) =

L∏
k=1

H0(e
j ω
2k ) (18)

ΨL(Ω) = H1(ej
ω
2 )

L∏
k=2

H0(e
j ω
2k ). (19)

Then, through the inverse Fourier transformwe obtain the
timedomain approximations to the correspondingwavelet
and scaling functions as φL(t) ↔ ΦL(Ω) and ψL(t) ↔
ΨL(Ω).
The functions ψL(t) and φL(t) are different than the

theoretically defined wavelet and scaling functions ψ(t)
and φ(t). Indeed, it is impossible to obtain the latter since
it requires infinitely many terms in the product. Figs. 1a
and 1b displays approximations to the scaling and wavelet
functions generated by using 4-tap Daubechies PR-QMF
with various values of L in Eqs. (18) and (19), respectively.
We would like to quantify the approximation errors

of scaling and wavelet functions due to finite number of
terms used in their generation. Let us define mean square
error (mse) of approximations for wavelet and scaling
functions as follows

eNφ (L) =
∫
[φN
∞
(t)− φNL (t)]

2dt (20a)

eNψ (L) =
∫
[ψN
∞
(t)− ψNL (t)]

2dt (20b)

where N is the number of filter taps in a two-band PR-
QMF bank. Fig. 2 displays eNφ (L) and e

N
ψ (L) for Daubechies

wavelets family for N = 4. We assumed that φN
∞
(t) =

φN14(t) andψ
N
∞
(t) = ψN14(t) in Eqs. (14) and (15) due to the

limitations of computational power we had and then, we
calculated mse of Eq. (20) for various cases and displayed
them in Fig. 2.
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Fig. 1b. Approximations to the {ψL(t)} wavelet functions for 4-tap
Daubechies wavelet filters with various values of L in Eq. (19).
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Fig. 2. Mean square errors (mse) of various approximations to
Daubechies wavelet and scaling functions for N = 4 defined in Eqs. (20a)
and (20b).

2.5.2. Wavelet approximation error due to sampling of
signals
In order to highlight and visualize the following theo-

retical discussions we define an arbitrary continuous-time
signal f (t) expressed as,

f (t) = cos(2π0.5t)+ 0.5 sin(2π0.2t)+ 3 sin(2π0.1t)
+ 2 cos(2π0.3t)− 2 cos(2π0.4t).

Then, we sample f (t) as f (n) = f (nTs) = f (t)|t=nTsTs =
1 s. fs = 1

Ts
= 1 Hz.

On the other hand, let us calculate the scaling coeffi-
cients {cm,n} of f (t) for scalem = 0 as defined in Eq. (10)

c(n) = c0,n = 〈f (t), φ0,n(t)〉 =
∫
f (t)φ(t − n)dt.

Since c(n) 6= f (n), we now define the error signal and
normalized mean square error between f (n) and c(n)
sequences as follows,

e(n) = f (n)− c(n) (21a)
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emse =
1
K

K−1∑
n=0

[e(n)]2

[f (n)]2
. (21b)

Fast wavelet transform
Note that two-band orthonormal PR-QMF based

discrete-time dyadic (octave band or constant-Q) filter
bank offers a fast wavelet transform implementation for
continuous-time f (t) function iff it is completely repre-
sented within the scaling subspace of the resolutionm = 0
of multiresolution signal analysis framework as f (t) ∈
L2(R) and f (t) ∈ V0; d(n) = d0,n = 0, and if its discrete-
time input sequence is basically the scaling coefficients of
the scale m = 0 as described above, namely f (n) = c(n)
and d(n) = 0 [6,14]. Then, as an example, the subband sig-
nal samples of this dyadic filter bank for subbands like H,
LH, LLH, LLLH are identical to the correspondingwavelet co-
efficients d(1, n), d(2, n), d(3, n) and d(4, n) of those res-
olution scales for m = 1, 2, 3, 4, respectively, where L
stands for low frequency half-band, and H stands for high
frequency half-band of a two-band PR-QMF [6,14].
These FIR PR-QMF filter sequences {h0(n)}, {h1(n)}

are also used to generate the corresponding scaling
and wavelet functions of this multiresolution analysis as
defined in Eqs. (18) and (19).
Similarly, the output samples of the discrete-time

LLLLL subband is equal to the scaling coefficients of that
resolution scale m = 5 represented as c(5, n). In such a
situation, the theoretical requirement of f (n) = c(n) for a
fast wavelet transform implementation in multiresolution
analysis employing a discrete-time two-band PR-QMF
based discrete-time dyadic filter bank perfectly holds only
for Shannonwavelets that are generated by using the ideal
low-pass and high-pass discrete-time filters of a two-band
PR-QMF, {h0(n)}, {h1(n)} as given in Eqs. (14) and (15), and
also with the requirement of d(n) = d0,n = 0. Therefore,
all other wavelet decompositions performed on already
sampled signals inherently have the wavelet transform
approximation errors due to the theoretical facts that

(a) an arbitrary continuous-time signal f (t) ∈ L2(R) can be
approximated by P−1f (t), its projection onto subspace
V−1 expressed as P−1f (t) = P0f (t) + Q0f (t) with
the orthogonal complement property V−1 ∈ V0 ⊕
W0 and V0⊥W0 where V0 and W0 are the scaling and
wavelet subspaces, respectively, in the resolution level
m = 0; therefore, d(n) = d0,n 6= 0, and

(b) using the samples of f (t) as the input sequence of
the dyadic filter bank rather than calculating the scal-
ing coefficients c(n) = {c0,n} =< f (t), φ0,n(t) >=∫
f (t)φ(t− n)dt of that multiresolution analysis as re-
quired for the fast wavelet transform implementation
discussed above. The readers of more theoretical in-
terest are referred to the References [6,14] for detailed
treatment of this point.

Fig. 3 displays e(n) of Eq. (21) along with {f (n)} and
{c(n)} sequences for the case of 4-taps Daubechieswavelet
filter and f (t) defined above. It is noted that emse is
equal to 0.022 for this case. Fig. 4 displays emse versus
L defined in Eq. (21) for both 4-taps and 8-taps cases.
This important theoretical fact has been overlooked by
many researchers in the literature employing wavelet
-6
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culated for various approximations to 4-length and 8-length Daubechies
scaling functions.

decomposition for discrete-time (already sampled) signals
using discrete-time filter banks. It is noted that discrete-
time subband transform (filter bank) theory and methods
offer an error-free and complete theoretical framework for
multiresolution decomposition of discrete-time signals.
In the next two sections, we present several emerging

analog applications of wavelet transform emphasizing its
almost untapped and tremendous potential as a conti-
nuous-time signal processing framework in future re-
search and technology development alongwith a fewmore
commonly known discrete-time applications.
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3. Analog signal processing applications of discrete
wavelet transform

In Section 2, it was already mentioned that the mother
wavelet function basically is the (reversed) impulse
response of a continuous- or discrete-timeband-pass filter.
As a consequence, the discretewavelet transformmay thus
be implemented by an analog filter bank, comprising of
continuous- or discrete-time wavelet filters where each
implements one (e.g., dyadic) scale of the multiresolution
wavelet transform.
The starting point of the wavelet filter design trajec-

tory presented here is the definition of its transfer func-
tion or, equivalently, a differential equation, describing its
input–output relation. However, a linear differential equa-
tion having a predefined desired impulse response does
not always exist. Hence, one needs to use a suitable ap-
proximation method covered in Section 3.1. There are sev-
eral mathematical techniques that are frequently used to
achieve the best approximation possible. Nonetheless, one
of the most important aspects of analog wavelet filter syn-
thesis is that the approximating function must lead to a
physically realizable network which is dynamically stable.
Next, as there are many possible state–space descrip-

tions and thus filter topologies that implement a partic-
ular transfer function, the designer has to find one that
fits specific design requirements. Since in many applica-
tions like in wearable or implantable medical devices, the
power consumptionmust beminimized to ensure long op-
eration times from a battery, we optimize the state–space
description of the wavelet filter for dynamic range, insen-
sitivity to component variations and sparsity as discussed
in Section 3.2. We will focus on a synthesis technique that
is exclusively based on (continuous- or discrete-time) in-
tegrators. In order to implement a discrete-time wavelet
filter, one must obtain a transfer function in the Z-domain.
In contrast, a continuous-time wavelet filter is described
mathematically by a rational function in the Laplace do-
main.
The last step deals with the design of the integrator that

is the main building block of a wavelet filter. It is discussed
in Section 3.3 in detail.
Finally in Section 3.4, we discuss two applications of

analog wavelet filters, namely circuits for the real-time
analysis of EKG (electrogram) signals and pulse generators
for ultra-wideband communications.

3.1. Finding a suitable approximation to desired wavelet by a
low-order rational transfer function

The available methods for generating the filter transfer
function can be classified as the closed-form and the
iterative techniques. In closed-form methods, the transfer
function is derived from a set of closed-form formulas or
transformations. Some classical closed-form solutions are
the so-called Butterworth, Chebyshev, Bessel-Thompson
and elliptic approximations. Iterative methods entail a
considerable amount of computation and they can be used
to design filters with arbitrary responses.
If the desired wavelet filter transfer function does

not have an explicit expression, then the splines based
interpolation method can be used to generate the desired
(idealized) function that can be used as a starting point for
the filter design process.
In electronic filters, the power consumption and the

dynamic range are proportional and inversely proportional
to the order of the filter, respectively. In this design step,
the joint optimization of power consumption and dynamic
rangemeans finding a low-order rational approximation to
the Laplace transform of the desired wavelet filter transfer
function. In the sequel, we will deal with two techniques
in order to achieve such an approximation. They are (a)
the Padé approximation and (b) the L2 approximation as
described below.
(a) The PadéApproximation: It is employed to approximate
the Laplace transform of the desired filter transfer function
G(s) by a suitable rational function H(s) [24]. It is
characterized by the property that the coefficients of
the Taylor series expansion of H(s) around a selected
point s = s0 coincide with the corresponding Taylor
series coefficients of G(s) up to the highest possible order,
given the pre-specified degrees of the numerator and
denominator polynomials of H(s). If we denote the Padé
approximation H(s) of order (m, n), withm ≤ n, at s = s0,
by

H(s) =
p0(s− s0)m + p1(s− s0)m−1 + · · · + pm
(s− s0)n + q1(s− s0)n−1 + · · · + qn

(22)

then there are m + n + 1 degrees of freedom. This
generically makes it possible to match exactly the first
m + n + 1 coefficients of the Taylor series expansion of
G(s) around s = s0. This matching problem can easily be
rewritten as a system of m + n + 1 linear equations in
the m + n + 1 variables p0, p1, . . . , pm, q1, . . . , qn, and
a unique solution is obtained easily. Moreover, a good
match is guaranteed between the given function G(s) and
its approximation H(s) in a neighborhood of the selected
point s0.
However, there are also some disadvantages limiting

the practical applicability of this technique [25]. One im-
portant issue concerns the selection of the point s0. Note
that a good approximation of G(s) around one point in
the (complex) Laplace domain is not a requirement per
se. The second important issue is the stability. It does not
automatically result from the Padé approximation tech-
nique. For example, if emphasis is put on obtaining a
good fit for a particular s0, it may easily happen that the
resulting approximation becomes unstable. The trade-off
between a good fit near a certain point s = s0 and sta-
bility is a non-trivial problem. The third design issue is
the choice of the degrees m and n for the numerator
and denominator polynomials of the rational approxima-
tion H(s). An improper choice may yield an inconsistent
system of equations yielding an unstable approximation.
(b) L2 Approximation: It is an alternative to the Padé
approximation offering a number of advantages [19,25].
First of all, on the conceptual level, it is quite appropriate
to use the L2-norm to measure the quality of an approxi-
mation H(s) to the function G(s). Another advantage of L2
approximation is that it can be applied both in the time do-
main as well as in the Laplace domain.
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According to the Parseval theorem, minimization of
the squared L2-norm of the difference between G(s) and
H(s) over the imaginary axis s = jω in the complex
plane is equivalent to minimization of the squared L2-
norm of the difference between g(t) and h(t) functions
in the time domain. Particularly in the case of low-order
approximation, the L2 approximation can be achieved in a
simple and straightforward way using standard numerical
optimization techniques and software tools available.

3.2. Finding state–space description of optimal wavelet filter

After we complete the design of the wavelet filter
transfer function, we design the wavelet filter topology.
Since there are many possible state–space descriptions
for a particular transfer function, many possible filter
topologies exist. We will concentrate on finding a filter
topology that is optimized for both dynamic range and
power consumption.
It is well known from linear systems theory that any

causal and linear filter of finite order n can be represented
in the Laplace domain as a state–space system (A, B, C,D),
described in a set of associated polynomial equations of the
form,

sX(s) = AX(s)+ BU(s)
Y (s) = CX(s)+ DU(s)

(23)

whereU(s) denotes the scalar input to the filter, Y (s) is the
scalar filter output and X(s) is the state vector.
The transfer function of the filter is given by

H(s) = C(sI− A)−1B+ D. (24)

For the discrete-time case, similar expressions hold in the
Z-domain.
The dynamic range of a system is essentially deter-

mined by the maximum processable signal magnitude and
the internally generated noise. It is well known that the
system’s controllability and observability gramians play
a key role in the determination and optimization of the
dynamic range [26,27]. The controllability (K) and observ-
ability (W) gramians are derived from the state–space de-
scription and they are computed by solving the equivalent
Lyapunov equations

AK+ KAT + 2πBBT = 0 (25)

and

ATW+WA+ 2πCTC = 0. (26)

Since the dynamic range of a circuit is defined as the ra-
tio of the maximum and the minimum signal levels it can
process, optimization of the dynamic range is equivalent
to the simultaneous maximization of the (distortionless)
output swing and the minimization of the overall noise
contribution. In Ref. [28], Rocha gives a geometric interpre-
tation for the optimization of the dynamic range. A visual-
ization of the optimization procedure is displayed in Fig. 5
for a system with three state variables. The output swing
is related, via the controllability gramian, to the space of
‘‘occurring’’ state–space vectors. Under the assumption of
a random input signal, the shape of this space is generally a
multidimensional ellipsoid. The constraint that each inte-
grator has a maximum representation capacity M defines
a multidimensional cuboid that, for a distortionless trans-
fer function, should contain the former mentioned ellip-
soid completely. As themean square radius of the ellipsoid
is equivalent to the maximum output swing, the output
swing is maximized when the mean square radius is max-
imal. This can occur if and only if the ellipsoid becomes a
spheroid. In that case the controllability gramian is a di-
agonal matrix with equal diagonal entries. It means that
all axes of the ellipsoid have equal lengths. Therefore, the
first optimization step boils down to a similarity transform
such that the controllability gramian of the new systembe-
comes a diagonal matrix with equal diagonal entries.
In the second step of the optimization procedure, the

system is optimized with respect to its noise contribution.
Rocha defines another ellipsoid representing the noise that
is added to the state vector in each direction. While pre-
serving the result of the first optimization step, it is po-
ssible to rotate the state–space such that the observability
gramian becomes a diagonal matrix as well. In that case,
the axes of the noise ellipsoid are aligned with the ‘‘system
axes’’.
In order to maximize the dynamic range of the system,

it is shown in Ref. [28] that one should minimize the
objective function representing the relative improvement
of the dynamic range and contains all parameters that are
subject to manipulation by the designer. This objective
function is expressed as

FDR =
max
i
kii

(2π)2
∑
i

αi

Ci
wii (27)

where kii and wii are the main diagonal elements of K and
W, respectively, αi =

∑
i Aii is the absolute sum of the

elements on the ith row of A, and Ci is the capacitance in
integrator i.
Finally, exploiting the well known fact that the relative

noise contribution of an integrator decreases when the
capacitance and bias current increase, we apply noise
scaling, i.e., we match an optimal capacitance distribution
to the noise contributions of each individual integrator, viz.
the diagonal entries ofW, combined with the coefficients
in matrix A resulting in [28]

Ci =
√
αiwiikii∑

i

√
αiwiikii

· Ctot. (28)

Ctot being the total capacitance of the wavelet filter. The
drawback of a dynamic-range optimal system is that its
state–space matrices are generally fully dense, i.e., all
the entries of A, B, C are filled with nonzero elements.
These coefficients will have to be mapped on circuit
components and it will result in a complex circuit with a
large number of interconnections. For high-order filters it
is therefore necessary to investigate how a realization of
the desired transfer function having sparser state–space
matrices would compare to the one having maximal
dynamic range. Also, when designing high-order filters,
it is very desirable to concentrate on circuits that are
less sensitive to component variations. It is known that
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a b c

Fig. 5. Dynamic-range optimization based on the similarity transformation of K,W and capacitance distribution. The coordinate axes represent the state
variables and the cuboid represents the maximum signal amplitude (M) that the integrators are able to handle. (a) The initial state–space representation
(ellipsoid) is usually notwell adapted to the integrators’ representation capacity bounds (cuboid). (b) The (rotated) ellipsoid’s principal axes are nowaligned
to the coordinate axes as a result of the diagonalization procedure to the matrices K andW. (c) Finally, the optimized state representation is obtained by
scaling the state variables and the noise. Note that the sphere represents themaximumpossiblemean square radiuswhich can be fitted into the integrators’
capacity cuboid.
a

b

Fig. 6. Block diagram of an orthonormal ladder filter [20], (a) Leapfrog
structure, (b) Output summing stage.

an optimal dynamic-range system will also have optimal,
i.e., minimal, sensitivity [29]. For a less complex circuit, it is
possible, for instance, to reduce A to upper triangular by a
Schur decomposition, and therefore, reducing the number
of nonzero coefficients in A. However, this transformation
leads to an increase in the system noise and consequently
to an increase in the objective function FDR in Eq. (27).
Another possibility is the orthonormal ladder structure [20]
that is significantly sparser than the fully dense A matrix
of the dynamic-range optimized system and the Schur
decomposition. And, it still presents a good behavior with
respect to sensitivity.
Fig. 6 shows a block diagram of a general orthonormal

ladder filter [20]. The filter output is obtained from a linear
combination of the outputs of all integrators.
The A matrix of an orthonormal ladder filter is tri-

diagonal and is very nearly skew-symmetric except for
a single nonzero diagonal element. The B vector consists
of all zeros except its nth element. Another property of
orthonormal ladder filters is the fact that the resulting
circuits are inherently state scaled, i.e., the controllability
gramian is already an identity matrix. The drawback of
this structure is that the system is not optimized with
respect to its noise contribution. However, if an optimal
capacitance distribution is applied to this suboptimal
system, it can still yield some extra gain compared to
the case of equal capacitances. Often this leads to a filter
topology that is not too complex and it has a dynamic range
that is close (i.e., within a few dBs) to the optimal solution.

3.3. Wavelet filter integrator design

After an optimal wavelet filter topology is selected and
the appropriate coefficients are chosen, we design the
main building block of the wavelet filter circuit, viz. the
integrator, as follows.

3.3.1. Four integrator classes
In order to be able to construct the wavelet filter

topology, the transfer function of the integrators should
be dimensionless. In an integrated circuit, i.e., on a chip,
the integrating element is a capacitor, which can be
employed as a (passive) capacitance or as part of an
active trans-capacitance (amplifier) and whose transfer
function has a dimension Ω . To realize a dimensionless
integrator transfer function, we thus need an additional
(trans)conductance (with a dimension Ω−1). Hence, the
following four types of integrators can be distinguished for
our purposes. Namely,

(a) conductance–capacitance integrators,
(b) conductance–transcapacitance integrators,
(c) transconductance–capacitance (gm–C) integrators, and
(d) transconductance–transcapacitance integrators.

Fig. 7 depicts the four integrator types that implement a
voltage-to-voltage integration.
The conductance–capacitance integrator does not use

active components. Both the required conductance and
integration are implemented passively without the use of
transistors. As a result, using this type of integrator, it is
not possible to implement filter transfer functions with
complex poles.
The second type of integrator, the conductance–transca-

pacitance integrator, does not have this drawback. Thus, it
is usedmore often. In this type of integrator, the realization
of the actual integration function is an active transcapaci-
tance often comprising an operational amplifier (op amp)
having a capacitor in its (shunt) feedback path. The opamp
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Fig. 7. Four integrator classes.
can be designed to operate rail-to-rail at the output ter-
minals. Therefore, a full advantage of the supply voltage
is utilized leading to an optimal dynamic range. The con-
ductance can be integrated as a resistor. It could also be
implemented as a MOS transistor in the triode region thus
yielding aMOSFET-C integrator [30].
The third integrator type, the transconductance–capaci-

tance integrator, makes use of active conductances, i.e.,
transconductances. The advantage of transconductors is
that they are able to operate at relatively high frequencies
due to the fact that their parasitic capacitances at the
input and output nodes are in parallel with the integrator
capacitors. Thus, they can easily be accounted for in the
dimensioning of the required capacitor [31]. A major
drawback, however, is that it is very difficult to implement
transconductors with rail-to-rail input capability and thus
with maximum dynamic range.
The fourth type is the transconductance–transcapaci-

tance integrator. This integrator has no advantages over
the second and third integrators mentioned. Its important
disadvantage is the use of two active parts, both adding
to the distortion, the power consumption and the noise
production.
In conclusion, the second and third types of integrators

are preferred when one designs wavelet filters. An active
part is required for both of these integrator types.

3.3.2. ELIL and ELIN
As integrators consist of twoparts, a (trans)conductance

and a (trans)capacitance, based on the relationships of the
intermediate quantity to the input and/or output quantity,
linear integrators, our main wavelet filter building blocks
can be further classified into two categories [32]. Namely,

(a) externally linear, internally linear (ELIL), and
(b) externally linear, internally non-linear (ELIN).

Most of the known integrator types fall into the first cate-
gory, ELIL. In ELIL integrators, the intermediate quantity is
linearly related to the input and output quantities. Among
them are the integrator topologies that are commonly
referred to as Gm-C,MOSFET-C, opamp-RC, RC and even (al-
beit discrete time rather than continuous time) switched-
capacitor (SC) integrators.
In ultra-low-power (i.e., nano- andmicro-power) appli-

cations, resistors would become too large for integration
on chip, occupying a large chip area, having a small band-
width or suffering from large absolute tolerances. For these
cases, we will resort to ELIN integrators.
For the second category, ELIN integrators, it holds that

their external behavior is precisely linear, yet the inter-
mediate quantity is non-linearly related to its input and
output quantities. Here, we find the subcategory of in-
stantaneously companding1 integrators, i.e., the degree of
compression/expansion at a given instant depends only
on the value of signals at that instant [32,33]. Belonging
to this subcategory, the class of dynamic translinear [33]
(also known as log-domain [34–36] or exponential state–
space [37]) is probably the most well known. To the sub-
category of companding integrators, albeit discrete time
rather than continuous time, also belong switched cur-
rent [38] and switchedMOSFET [39,40] integrators.Wewill
give an example of a dynamic translinear wavelet filter for
biomedical applications in the next subsection.

3.4. Applications of analog wavelet filters

3.4.1. Low-power implementation of analog wavelet filter
bank for biomedical signal processing and pacemakers
The detection of action potentials is an important func-

tion in many wearable and implantable medical devices.
A well known example is the so-called ‘‘sense amplifier’’
in cardiac pacemakers designed to detect the QRS com-
plex in the cardiac cycle in real time. Over the years, many
systems have been devised in order to perform this task.
They all have in common that they comprise of a filtering
stage (performing linear and/or non-linear filtering) and a
decision stage (comprising of peak detection and decision

1 Companding is a combination of compressing and expanding.
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Fig. 8. Wavelet-based QRS modulus maxima detection system [41].
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Fig. 9. Sixth-order L2 approximation of gaus1 wavelet function.

logic). The detection of the QRS complex presented here
is based on the detection of the modulus maxima of the
wavelet transform.
The proposed block diagram is displayed in Fig. 8 [41].
At the input, wavelet filters are situated to implement

an approximation to the first derivative Gaussian wavelet
transform. The complete filter bank comprises of a bank of
wavelet filters in order to compute the various scales of the
wavelet transform in real time. Subsequently, the signal is
fed through an absolute value circuit, followed by a peak
detector and an adaptive threshold detector detecting the
peak level of the rectified wavelet filter signal.
For the approximation to the gaus1 wavelet base,

a sixth-order L2 approximation is used. The resulting
wavelet filter transfer function is expressed as

H[4/6](s)

=
−0.16s4 + 8.32s3 − 6.64s2 + 139s

s6 + 5.9s5 + 30.5s4 + 83.1s3 + 163s2 + 176s+ 93.3
(29)

and its corresponding impulse response is shown in Fig. 9.
For the wavelet filter topology, an orthonormal ladder
filter is defined as discussed above. The block diagram
of the sixth-order orthonormal wavelet filter employing
transconductance–capacitor integrators is displayed in
Fig. 10.
In an ultra-low-power application such as cardiac

pacemakers, it is often more convenient to implement
the integrators in an ELIN fashion as discussed above. For
this example, we have adopted the dynamic translinear
circuit technique to implement the integrators in the
orthonormal wavelet filter and also to implement the
subsequent rectifier, peak detector and comparator. The
circuit details of this design example can be found in
Ref. [41].
In order to verify the performance and efficacy of the

wavelet-based QRS modulus maxima detection system,
a set of cardiac signals was applied to the input of the
system. Fig. 11a shows the ideal wavelet transform for 5
scales with a ventricular IECG signal at the input. Fig. 11b
gives the circuit simulation result of a sixth-order wavelet
filter bank. On the left, we see the cardiac signal and 5
scales of the discrete wavelet transform. On the right, the
modulus maxima (the white regions) are depicted also
for 5 scales. One clearly can see the similarity between
the ideal wavelet transform and the performance of the
implemented system.
The circuit was implemented using the DIMES SIC3A

IC process of Delft University of Technology. A chip
photomicrograph is shown in Fig. 12.
In order to facilitate easy measurement of the system,

all capacitors are off-chip.
As stated earlier, the wavelet transform allows analysis

of the ECG signal focusing on the signal at various levels
of detail. Analyzing the structure of the electrogram over
multiple scales allows discrimination of electrogram signal
features pertaining over all scales from those only seen
at fine or coarse scales. Fig. 13 shows the measured
response for 3 scales of the wavelet filter bank for the
built-in (external) ECG signal of an Agilent 33120A signal
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Fig. 10. Block diagram of the sixth-order orthonormal wavelet filter employing transconductance–capacitor integrators.
a

b

Fig. 11. (a) Ideal wavelet transform (5 scales), (b) sixth-order wavelet filter bank response (5 scales) for an intracardiac ECG input signal (left) and the
detection of the modulus maxima (right).
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Fig. 12. Chip microphotograph of the QRS wavelet-based QRS modulus maxima detection system.
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Fig. 13. Measured response of 3 scales of the system’s wavelet filter bank (below) to a stylistic ECG signal (above).
generator. As one can observe from the figure, at very fine
scales (smaller values of scale a), details of the electrogram,
i.e., the QRS complex, are revealed. At coarse scales (larger
values of a), the overall structure of the electrogram can be
studied while overlooking at the details. Note that by this
global view, the P-wave, the QRS complex and the T-wave
can be more easily detected.
One of the important applications of wavelet transform

is of in-band noise removal or denoising. The out-of-band
noise can be removed by applying a linear time-invariant
filtering approach like Fourier analysis based techniques.
However, it cannot be removed when it overlaps the
signal spectrum. Being amultiscale analysis technique, the
wavelet transform offers the possibility of selective noise
filtering and reliable parameter estimation. Denoising is
based on correlation factor (amplitude) discrimination.
This feature can be used to distinguish cardiac signal points
from noise and interference, regardless of the frequency
content of the noise. Fig. 14 displays a typical ventricular
signal with additive white Gaussian noise (a random signal
with a flat power spectral density), and the outputs of one
wavelet filter (a = 21) and its subsequent absolute value
detector. One can see that the wavelet filter can effectively
remove the in-band and out-of-band noise present in the
signal and the modulus maxima of the QRS complex are
identified.
The total power consumption of the QRS wavelet-
based QRS modulus maxima detector amounts to 550 nW
(i.e., 110 nW per scale).

3.4.2. Ultra-wideband (UWB) communications using wave-
lets
Recently, the development of ultra-wideband (UWB)

radio technology has been one of the most exciting pro-
gresses in the communications field. UWB radio technol-
ogy not only promises enhanced data throughput with
low-power consumption, but also provides high immu-
nity against electromagnetic interference (EMI) and robust
performance against to fading. It is expected that future
short-range indoor UWB telecommunication systems will
operate in the frequency band from 3.1–10.6 GHz accord-
ing to the Federal Communications Commission (FCC).
Although ultra-wideband communication offers signifi-
cant resources and advantages its technological challenges
also need to be addressed by researchers and communica-
tions engineers.
When implemented as impulse radio (IR–UWB) (i.e.,

where the information is transmitted by very short EM
pulses) this new communication technology may revo-
lutionize the way we think in wireless technology by
modulating data in time rather than in frequency with
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Fig. 14. Measured wavelet filter output (one scale, middle) andmodulus maxima detection (bottom) when driven by a noisy ventricular IECG signal (top).
low-power consumption. From the perspective of tradi-
tional narrowband systems, the wideband nature of UWB
systems requires a totally different design methodology of
both the UWB front-end architecture and its constituting
UWB circuit building blocks.
For IR–UWB, a convenient waveform to be trans-

mitted is the Gaussian monocycle as it offers the best
time–frequency resolution product. This feature is impor-
tant for applications such as positioning and imaging. The
Gaussian monocycle can be generated using a wavelet fil-
ter whose impulse response is the first derivative function
of a Gaussian. For the filter topology, we can adopt the
same topology as presented in the previous section or the
one described in Ref. [41] comprising of a cascade of three
complex first-order systems (CFOS) which in turn, consist
of Gm-C sections employing differential pairs with par-
tial positive feedback [42]. The entire impulse radio UWB
transmitter is a combination of a pulse-positionmodulator
(PPM) and a pulse generator (PG).
Fig. 15a shows the UWB transmitter IC mounted on

its antenna printed circuit board (PCB). The antenna flares
are the two Mickey-Mouse like ellipses on the back of the
PCB and measures approximately 2 by 4 cm. The IC (see
also the insert) is located in the middle of the PCB and
measures 1.25 mm2. The circuit has been designed using
IBM 0.18 µm BiCMOS IC technology.
Fig. 15b displays themeasured outputwaveforms of the

pulse generator for transmitted ‘‘0’’ and ‘‘1’’ bits, respec-
tively. A proper pulse position modulation is confirmed in
the implementation.
Table 1 highlights the measured parameters of the im-

pulse generator.

4. Discrete-time signal processing applications of dis-
crete wavelet (subband) transform

The effectiveness of wavelet (subband) transforms for
discrete-time signal processing applications is due to their
ability to provide efficient sparse representations for many
natural signals. For example, sparse representations are
important in coding. The image compression software on
board NASA’s Mars Rovers, designed for the requirements
of deep-space communication, used wavelets; as does
JPEG2K.Wavelet-based algorithms for noise reduction, de-
convolution, interpolation, and dequantization, also rely
Table 1
Measured performance of the UWB transmitter.

Technology 0.18 µm BiCMOS (IBM)
Die area 1.25 mm2

Active area 0.306 mm2
Pulse width Gaussian monocycle 375 ns
PPM time delay 330 ns
Wavelet filter current consumption 14.4 mA at 1.8 V

on sparse representations. For some types of data, the wa-
velet transform does not provide a sparse representation;
for these signals, other transforms or other non-transform
based algorithms will be a better choice. Generically, the
wavelet transform provides a sparse representation for
piecewise smooth signals, like the scan-line of an image.
Many algorithms based on wavelet transforms have

been proposed for the reduction of noise in signals and
images. That is, the estimation of x from a noisy observa-
tion, y = x + noise. The most basic approach is to first
compute the wavelet transform of the noisy signal, then
to process the wavelet coefficient in an appropriate man-
ner, generally, by reducing or shrinking in absolute value
the small coefficients, and to lastly compute the inverse
wavelet transform. The various algorithms differ in the
way thewavelet coefficients aremodified and in the type of
wavelet transform utilized. Simple shrinkage rules include
the soft-threshold and hard-threshold non-linearities.
Denoising by wavelet-domain soft-thresholding can be
written as

x̂ = W−1ST (Wy) (30)

whereW represents the wavelet transform, andW−1 rep-
resents the inverse wavelet transform, and where ST (v)
represents the soft-threshold function with threshold T
applied point-wise to the elements of the vector v. Im-
proved denoising performance can be obtained when the
thresholds are individually selected for each subband.
One class of algorithms for modifying the wavelet coef-

ficients starts with some statistical model for the distribu-
tion of noise-free wavelet coefficients and uses Bayesian
estimation theory to derive non-linear estimation pro-
cedures, a representative example being [43]. The soft-
threshold denoising rule can also be derived in this way
as the solution to a simple estimation problem. Many
algorithms are obtained by postulating different prior



A.N. Akansu et al. / Physical Communication 3 (2010) 1–18 15
Fig. 15a. Integrated UWB transmitter mounted on the back side of the antenna.
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Fig. 15b. Measured pulse generator output waveforms while transmitting ‘‘0’’ or ‘‘1’’ bits.
distributions and various models to capture inter-scale
and intra-scale dependencies. Another class of algorithms
avoids the use of an explicit prior distribution. For exam-
ple, the use of Stein’s unbiased risk estimator, SURE, is pro-
posed in [44] to determine an appropriate threshold for
the soft-threshold rule. More recently, the SURE technique
is used in [44,45] to create a computationally simple yet
effective denoising algorithm in which optimal parame-
ters of a parameterized non-linearity are obtained by min-
imizing SURE. For the non-linearities proposed in [44,45]
the minimization requires only the solution to a small
set of linear equations. To further improve performance,
some denoising algorithms combine wavelet-coefficient
thresholding with other criteria like total variation [46].
While most of the proposed wavelet-based denoising
algorithms are developed for the case of additive indepen-
dentwhiteGaussian noise, severalmethods have beenpro-
posed for themore difficult case of signal-dependent noise,
e.g., Poisson, etc., which is important due to its relevance in
medical imaging.
The restoration of degraded signals and images often

requires correcting for blurring as well as reducing noise.
Therefore, wavelet-based algorithms for combined decon-
volution and denoising have also been developed which,
like denoising algorithms, are motivated by the ability of
wavelet transforms to provide sparse representations of
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signals and images. Wavelet-based deconvolution algo-
rithms are usually iterative. For the deconvolution prob-
lem, the observed data, y, is given by y = Hx + noise
whereH is a knownblurring operator and x is the unknown
signal to be estimated. It turns out that a simple deconvo-
lution algorithm can be derivedwhich generalizes the soft-
threshold rule. Specifically, the Thresholded-Landweber
iteration is

w(k+ 1)

= S(λ/2α)[w(k)+ (1/α)WHT (y− HW−1w(k))] (31)

wherew(k) is the vector ofwavelet coefficients at iteration
k. The estimated signal is then given by x̂ = W−1w.
The Thresholded-Landweber iteration can be derived via
estimation theory [47] or as the optimal solution to a
deterministic functional [48]. In particular, the iteration in
Eq. (31) minimizes the cost function

E =
∥∥y− HW−1w∥∥22 + λ ‖w‖1 (32)

where the first term measures the agreement with the
observed data and the second term promotes wavelet-
domain sparsity. The parameter λ controls how smooth
the result is. λ is equivalent to the SNR in a Bayesian
derivation of Eq. (31). The term α in Eq. (31) controls
the rate of convergence of the iteration; small values
of α increase the rate of convergence. But to ensure
convergence to the optimal solution of Eq. (32) α should
be greater than the maximum eigenvalue of H−1H . Note
that when H is the identity matrix (no blurring is present)
and W is orthonormal, then the result obtained by the
Thresholded-Landweber iteration is exactly the same as the
result of applying the wavelet-domain soft-threshold rule.
We note that the iteration in Eq. (31) is not the only
way to minimize Eq. (32). Indeed, techniques have been
developed to significantly speed up the convergence rate
at least in some cases. The cost function in Eq. (32) is
attractive in part because it is convex—the unique global
minimizer can always be found. However, as in the case of
denoising, by varying the cost function, or equivalently, by
varying the prior distribution forw, various deconvolution
algorithms can be obtained, potentially providing better
results. To further promote sparsity the L1-norm in Eq. (32)
can be replaced by the L0-norm which is non-convex. It
is then much more difficult to obtain the exact optimal
solution. However, approximate solutions to the L0-norm
criterion can be superior to the true L0-norm criterion
solution, depending on the problem.
A comparison between the L0-norm and L1-norm

for several applications suggests that, for most natural
images, the L0-norm is the more effective of these two
sparsity-promoting criteria [49]. One approach to obtain
a representation approximately minimizing the L0-norm
is to perform iterative hard-thresholding with successively
decreasing threshold values. In [49], it is shown that
this approach can be formally derived using optimization
principles. Examples in [49] illustrate excellent results for
dequantization, super-resolution, and de-mosaicing.
For some classes of signals and images, no single trans-

form can provide a sparse representation. Morphological
Component Analysis (MCA) was developed for this case
[50]. MCA uses two or more transforms together to ob-
tain a sparse representation. There is no unique represen-
tation, so MCA asks for a representation that maximizes a
total sparsity-promoting criterion. As a result, MCA can be
used to solve the following separation problem. Suppose
s(t) is a superposition of two signals, s(t) = s1(t) + s2(t).
Also, suppose s1(t) is sparsely represented using transform
F1 and, likewise, s2(t) is sparsely represented using trans-
form F2. Then, provided the transforms of F1 and F2 are
sufficient distinct, basis vectors of F1 are roughly uncor-
related with basis vectors of F2, then MCA can approxi-
mately recover s1(t) and s2(t). Examples in [50] illustrate
how the shape and texture of an image can be separated
using the curvelet transformanddiscrete cosine transform.
One way to implement the MCA algorithm is by iterative
thresholding,where the threshold is initializedwith a large
value and gradually reduced. The separation of a signal
into components, blind source separation (BSS), is also the
goal of Independent Component Analysis (ICA) which uses
multiple observation signals. For certain signals, MCA can
do that separation with a single observation signal. MCA
algorithms have also been developed for the case where
multiple observation signals is available, to provide a new
approach to BSS.
The development and popularity of algorithms for wa-

velet-based discrete-time signal processing has led to the
widespread appreciation of the power of sparse represen-
tations. In turn, this has led to the development of innova-
tive new algorithms based on sparse representations that
are not at all limited to wavelet-based signal processing.

5. Future research directions and conclusions

Historically speaking, analysis/synthesis filter bank co-
nfiguration, also interchangeably called subbandorwavelet
transform, based digital image and video processing has
been of great interest in the field due to its desirable
multiresolution representation features for visual signals.
Therefore, subband coding has become the main driver for
early research activities on the subject widely reported
in the literature. Similarly, synthesis/analysis filter bank
configuration, so-called transmultiplexer, provides a the-
oretical framework to analyze and design popular multi-
carrier modulation techniques spanning from orthogonal
frequency division multiplexing (OFDM) to code divi-
sion multiple access (CDMA) communications techniques.
More recently, wavelet transform with its sparsity (multi-
rate) and flexible spectral properties has been effectively
used for a variety of discrete-time signal processing appli-
cations including noise reduction or denoising, deconvolu-
tion, interpolation, and dequantization. We expect to see
further studies in those interesting application areas in the
future.
Although wavelet transform is defined in continuous

time, its most popular applications reported in the litera-
ture have been in discrete-time domain. We emphasize on
the built-in wavelet approximation errors in discrete-time
processing as well as emerging and much less known ana-
log applications of wavelet transform in this paper. A case
in point, the wavelet transform is extremely versatile for
the analysis of various electrophysiological signals (ExG)
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like Electroencephalogram (EEG), Electromyogram (EMG),
and Electrocardiogram (ECG). For example, neurological
EEG signals represent rhythmic potential fluctuations on
the head surface created by the synchronous discharge of
nerve cells and has been used to diagnose epilepsy. One of
the early signs of a seizure is the presence of characteristic
transient waveforms in the EEG (spikes and sharp waves).
The shape and size of these waveforms may substantially
vary from one patient to another. The wavelet transform
has been used as a detection tool due to the verymixed na-
ture of these phenomena, and wavelet analysis was shown
to be useful in identifying the localized features in the EEG
signal. Therefore, one could apply the proposed low-power
wavelet filter design methodology for EEG characteriza-
tion in closed-loop implantable neurostimulator devices
and cochlear implants.
We also expect new applications of two-dimensional

wavelets for biomedical imaging in ultra-low-power en-
vironments, for instance artificial retinae. Wavelets have
recently been applied to medical image compression and
found to be very effective. However, power consump-
tion is an important issue in a battery-operated artifi-
cial retinae design. Image computations usually require
large arrays of pixels. Therefore, due to the required
massive parallel processing for artificial implantable vi-
sion systems including large number of A/D converters
(one A/D converter per pixel) it turns out to be impractica-
ble. Hence, an analog implementation is feasible andmuch
more efficient than a digital onewith respect to power con-
sumption and chip area metrics of a design.
More recently, the idea of using wavelets in the real-

time sensing of radio spectrum for cognitive radio appli-
cation has been forwarded [22]. We expect more research
and development in communications field exploring po-
tential use of wavelets in next generation technologies.
In conclusion, wavelet transform framework is a very

elegant mathematical tool to design compactly supported
orthogonal and bi-orthogonal continuous-time function
sets or analog filter banks. It is expected to see an increased
amount of research and technology development work
in the coming years employing wavelets for various
engineering applications.
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