
- loglO[IHt,,t(a)I/IHtest (ma4111 (9) 
for J = 1, 2, ..., t(,,di,, where tor~l~ ,  = number of filters in the set, 
Hcu,((i) = the sampled cascade form frequency response, Hlts,(i) = 
the sampled frequency response of the filter under test, and 
H,(mux) = the maximum value of IH,(i)l. 

10 O -  

1 o-2 - 
- 4 .  

10 

-1 2 
10 Idol 1 

order 
Fig. 2 Maximum, minimum and averuge errors of’synthcsis algorithms 

0 new algorithm: maximum error 
1 new algorithm: minimum error 
0 new algorithm: average error 
X standard method: maximum error 

standard method: minimum error 
% standard method: average error 

Since no transformations were required to obtain the cascade 
form realisations, it was reasonable to assume that they were accu- 
rate representations of the filters. An overall average error 
Eiiidi, dB, for each set of filters was computed by averaging the 
average spectral deviations e,, according to eqn. 10. 

pp?. e; t 
&der = 10 _____ (10) [ E:er ] 

The average errors E,,,, are plotted together with the inaximum 
and minimum errors ffor each order, in Fig. 2. This shows that the 
new algorithm yielded smaller average errors than the DDPP 
method. Moreover, we found that the new algorithm yielded 
smaller errors than the DDPP method for almost every filter 
tested. 

Conclusions: A new parallel form filter synthesis algorithm has 
been defined. The new algorithm has a clear perfiormance advan- 
tage, in terms of accuracy, over the standard paralllel form synthe- 
sis method, even for low filter orders. 
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Dynamic translinear RMS-DC converter 

J. Mulder, W.A. Serdijn, A.C. van der Woerd and 
A.H.M. van Roermund 

Indexing terms: Convertors, Nonlinear filters 

Translinear, log-domain or exponential state-space filters 
constitute only a subclass of dynamic translinear circuits. The 
dynamic translinear principle can also be used to implement 
nonlinear dynamics. This is illustrated by the design of an RMS- 
DC converter. 

__ 

Introduction: One of the possible techniques to cope with the 
restrictions imposed by llow supply voltages is instantaneous com- 
panding [l], which is an inherent characteristic of translinear (TL) 
filters [2], also called exponential state-space filters [3]. TL filters 
exploit the exponential large-signal behaviour of the bipolar, or 
weak inversion MOS, transistor both for an expanding capaci- 
tance voltage to output-current conversion and to implement nul-  
tiplications of currents, based on the translinear principle [4]. Since 
TL loops are the basic elements of these filters, we propose the 
term: dynamic translinear principle, thus emphasising that trans- 
linear dynamic circuits ,are an extension of the conventional, i.e. 
static, translinear principle proposed by Gilbert [4]. 

TL filters inherit the advantages of conventional TL circuits: 
insensitivity to variations in temperature and processing, current 
controllability, large bandwidth and high functional density [5]. 

Another important chlaracteristic of TL circuits is that they can 
implement nonlinear trainsfer functions. Extending this to dynamic 
TL circuits implies that it will be possible to implement not only 
linear dynamic transfer functions, i.e. filters, but also nonlinear 
dynamics. Consequently, the dynamic translinear principle can be 
used to implement circuits ranging from filters to oscillators and 
even PLLs and chaotic circuits. 

Circuit description: A well-known example of a nonlinear dynamic 
operation is RMS-DC conversion, which can be performed by 
solving the equation 

I d  = (2) (1) 

where <...> represents an averaging operation. 
In conventional RMS-DC converters the squaring and division 

operations are performed by a second-order T L  loop [6]. A low- 
pass filter implements the averaging operation. Often, this is a 
first-order R C  section. However, this filter can also be realised in 
the translinear domain. Thus, all functions can be merged into one 
nonlinear dynamic T L  circuit, as will be shown. 

A TL first-order lowpass filter is described by [7] 

CUJY + IOI, =IoIz  (2) 
where I ,  and I, represent the input and output current of the filter, 
respectively, U, is the thermal voltage and I, D C  current. The dot 
represents a time derivative. The cutoff frequency of this filter is 
given by CO, = I,/(CU,). 

When we apply eqn. 2 to implement the averaging operation in 
eqn. 1, the input current I ,  of the filter is not the input current I,,, 
of the RMS-DC converter, but the fraction I:JIOul. Therefore, a 
dynamic TL first-order RMS-DC converter is described by the dif- 
ferential equation 

~ ~ ‘ T I o u t 1 0 u t  + IOI,%t = l O l $  ( 3 )  
which is nonlinear. 

To find a corresponding TL circuit we eliminate the derivative 
I,,,, from eqn. 3. The capacitance current Zcop in the substructure, 
characteristic for TL filters, depicted in Fig. 1 can be described by 

(4) 
IOUt 
Iout 

I c , z p  = cLTT- 

Note that a D C  voltage source in series with the base does not 
influence 

Applying eqn. 4, we can eliminate I,,,, from eqn. 3. A polyno- 
mial equation is obtained, in which all variables are currents: 

(5) + I ~ ) I L  = 1~1:~ 
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If the input current I,, is full-wave rectified, which is common 
practice [6], all factors in this equation are positive. In that case, 
these factors can directly represent collector currents in a TL loop 
and the polynomial can be implemented through the circuit shown 
in Fig. 2. 

6 GILBERT, B : ‘Translinear circuits - 25 years on - Part 111: 
developments’, Elecfron. Eng., 1993, pp. 51-56 

7 ADAMS. R w : ‘Filtering in the log domain’. 63rd Convention A.E.S., 
Los Angeles, preprint 1470, May 1979 

Optimum eigenfilters and matched filters 

1. Lakkis and D. McLernon 

Indexing term:  Matched,filters, Filters 

I 
Fig. 1 PrincQile o j  dynamic translinear circuits 

I 

Kiiq 

Fig. 2 Dynamic trantlinear R M S D C  converter 

Transistors Q,-Q6 constitute a third-order TL loop, implement- 
ing eqn. 5. The output current I,,, is the collector current of Q6. It 
is fed back to Q4. The substructure C-Q, generates the capacitance 
current A.,,p flowing through Q5. Q, and Q8 constitute two simple 
amplifier implementations, reducing the effects of finite pp In par- 
ticular, the base current of Qj, conducting IL,+Zo, becomes rela- 
tively large for input frequencies around CO,. 

SPICE simulations, using realistic minimum-sized transistor 
models, were performed to verify the correct operation of the cir- 
cuit. 

Conclusions: TL filters can be regarded as an extension of the T L  
principle. Therefore, the term dynamic translinear principle was 
proposed. This principle can be used to implement both linear and 
nonlinear differential equations. As an example of a nonlinear 
dynamic TL circuit, an RMSDC converter was designed. All nec- 
essary functions are merged into one TL loop, thus demonstrating 
the high functional density obtainable with TL circuits. Correct 
operation of the circuit was verified by simulations. 
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The authors propose three criteria for maximising the signal-to- 
noise ratio in detecting a signal in noise. In the stochastic case, the 
optimal filter maximising the average power of the signal to the 
average power of the noise is an eigenfilter. and is usually 
considered as the stochastic counterpart of the matched filter. 
This interpretation is inexact. However, the optimum eigenfilter 
can be viewed as a filter matched to the principal component of 
the signal’s power spectral density. A fast, efficient technique for 
the computation of the optimum eigenfilter is proposed. 
Simulation results show the efficiency of the proposed algorithm. 

Introduction: The detection of a signal embedded in additive noise 
is of special interest in signal processing. Applications can be 
found in radar, digital communications, and passive sonar. Fig. 1 
depicts the detection problem under consideration. The received 
signal ~ ( n )  consists of either a white Gaussian noise b(n) of power 
spectral density No or the noise h(n) plus a signal x(n).  Using an 
FIR linear time-invariant filter of order N characterised by an 
impulse response h(n) of unit energy, the function of the receiver is 
to make a decision in favour of one of two hypotheses: 

We assume that x(n) = 0 for n P [O, N - 11, and that the filter’s 
memory is at least equal to the signal’s length (N 2 L). Let x,(n) 
and b,(n) denote the signal and noise components of the filter out- 
put y(n) under hypothesis H,,  

‘V - I 

( 2 )  
k=O 

A-1 

b,(n) = h(k)b(n - IC) = bT(n)h 
k=O 

where the vectors in eqn. 2 have their normal meanings. The 
detection of the signal reduces to a comparison of the filter output 
to a threshold [l] as shown in Fig. 1. In this Letter, the optimum 
filter maximising the output signal-to-noise ratio (SNR), for three 
different criteria is considered, and the analogy between them is 
analysed. 

b(n) 
Fig. 1 Receiver structure 

(i) First cuse: The signal x(n) is a known deterministic signal of 
energy E,. We maximise (SNR), , which is defined as the instanta- 
neous power in the output signal measured at an arbitrary time 
instant m 1 L to the average power of the output noise, 

The (SNR), ,  is proportional to the square of the scalar product of 
h and x‘(n1). Consequently, the maximum can easily be shown to 
occur when hr = xH(m)/d(E,) or h(n) = x*(m - n)d(EJ, i.e. h(n) is a 
matched filter to the signal component, and the corresponding 
(SNR)o,l is 
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