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Abstract

Filtering is an indispensable elementary signal processing function in many elec-
tronic systems. In many critical applications, e.g., in portable, wearable, implantable
and injectable devices, one should maximize the dynamic range and, at the same
time, minimize the power consumption of the filter. This joint optimization can take
place in different phases, the filter transfer function design phase, the filter topology
design phase, and the filter circuit design phase.

In the filter transfer function design phase, the filter’s functional input-output
relation is mapped on a suitable filter transfer function. Two approximation tech-
niques are introduced: the Padé approximation and the L2 approximation. The
Padé approximation is employed to approximate the Laplace transform of the de-
sired filter transfer function by a suitable rational function around a selected point.
The L2 approximation offers a more global approximation, i.e., not concentrating
on one particular point, and has the advantage that it can be applied in the time
domain as well as in the Laplace domain.

In the filter topology design phase, the filter transfer function is mapped on a
suitable filter topology. For this, the filter transfer function is written in the form of
a state-space description, which subsequently is optimized for dynamic range, spar-
sity and sensitivity. In the determination and optimization of the dynamic range
the filter’s controllability and observability gramians play an important role. Dy-
namic range optimization boils down to transforming the controllability gramian
such that it becomes a diagonal matrix with equal diagonal entries, transforming
the observability gramian such that it also becomes a diagonal matrix, and capaci-
tance distribution. To improve the state-space matrices’ sparsity the dynamic-range
optimized matrices can be transformed into a form that describes an orthonormal
ladder filter. After applying capacitance distribution, a filter topology is found that
is not too complex and has a dynamic range that is close (i.e., within a few dBs) to
optimal.

Finally, in the filter circuit design phase, the filter topology is mapped on a
circuit. A classification of integrators is presented. Falling in the category of trans-
conductance-capacitance (gm-C) integrators, a novel nA/V CMOS transconductor
for ultra-low power low-frequency gm-C filters is introduced. Its input transistors are
kept in the triode-region to benefit from the lowest gm/ID ratio. The gm is adjusted
by a well defined (W/L) and VDS , the latter a replica of the tuning voltage VTUNE.
The resulting design complies with VDD=1.5V and a 0.35µm CMOS process. Its
transconductance ranges from 1.1nA/V to 5.5nA/V for 10mV ≤ VTUNE ≤ 50mV.
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To illustrate the entire filter design procedure, a dynamic translinear Morlet filter
is designed. Simulations and measurements demonstrate an excellent approximation
of the Morlet wavelet base. The circuit operates from a 1.2-V supply and a bias
current of 1.2µA.

Index Terms
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namic Translinear, Log-Domain, Gm-C, State Space Optimization, Dynamic Range,
Sensitivity, Sparsity

I. Introduction

FILTERING is an indispensable elementary signal processing function in many
electronic systems. Filters are either used for selection, i.e., to separate desired

signals from other signals and noise by making use of their differences in energy-
frequency spectra, or for shaping, i.e., to change the energy-frequency spectrum of
a single, desired signal. In practice, a piece of electronic apparatus that does not
contain at least one rudimentary filter can hardly be found.

Traditionally, filters operated in the continuous-time domain and have been de-
signed as resistively terminated lossless discrete inductor-capacitor (LC) filters. When
we wish to realize the filter on chip, however, often, at least for most sub-gigahertz
applications, this implies giving up the use of inductors. The Laplace transform of
filter transfer functions that can be realized with capacitive and resistive elements
only have real poles in the left half of the complex Laplace plane, while often transfer
functions with complex poles are called for. These are only realizable if active circuits
are added.

With the introduction of active circuits in filters, resulting in active filters, two fun-
damental problems are introduced. First, unlike passive reactances, active elements
produce noise and distortion. For this reason, active filters are bound to exhibit a
limited dynamic range, defined as the ratio of the largest and the smallest signal
level that the filter can handle. Second, unlike passive reactances, active elements
dissipate energy. Thus power has to be supplied. In many critical applications, e.g.,
in portable, wearable, implantable and injectable devices, one should maximize the
dynamic range and, at the same time, minimize the power consumption of the filter.
This joint optimization can take place in different phases:

1. the filter transfer function design phase,
2. the filter topology design phase, and
3. the filter circuit design phase.

In the first phase, the filter transfer function design phase, the filter’s functional
input-output relation is mapped on a suitable filter transfer function, whose Laplace
transform can be described by a strictly proper rational function of low order. For



obvious reasons only the implementation of a causal stable filter is feasible, meaning
that it will have a proper rational transfer function that has all its poles in the
complex left half plane and the degree of the numerator polynomial does not exceed
the denominator degree.

In Section II, two approximation techniques will be introduced: the Padé approxi-
mation and the L2 approximation. The Padé approximation is employed to approxi-
mate the Laplace transform of the desired filter transfer function by a suitable rational
function around a selected point. The L2 approximation offers a more global approx-
imation, i.e., not concentrating on one particular point, and has the advantage that
it can be applied in the time domain as well as in the Laplace domain.

In the second phase, the filter topology design phase, the filter transfer function
is mapped on a suitable filter topology. In such a topology, the input node, the
output node and the filter’s main building blocks, the integrators1, are interconnected.
An equivalent method for describing the topology of the filter is the state space
description, in which matrices are used to describe the connectivity of the integrators
and the coupling of the input and the output. An n-th order filter can always be
constructed by means of n integrators.

In Section III, the filter’s state-space description will be optimized for dynamic
range, sparsity and sensitivity. It will be shown that dynamic range optimization
boils down to transforming the controllability gramian such that it becomes a diagonal
matrix with equal diagonal entries, transforming the observability gramian such that it
also becomes a diagonal matrix, and capacitance distribution. To improve the state-
space matrices’ sparsity the dynamic-range optimized matrices can be transformed
into a form that describes an orthonormal ladder filter. After applying capacitance
distribution, a filter topology is found that is not too complex and has a dynamic
range that is close (i.e., within a few dBs) to optimal.

Finally, in the filter circuit design phase, the filter topology is mapped on a circuit.
This includes the implementation of the integrators, the interconnection circuitry and
their biasing subcircuits in a suitable IC technology. In Section IV, a novel nA/V
CMOS transconductor for ultra-low power low-frequency gm-C filters will be intro-
duced, employing transistors operating in strong inversion and in the triode region.
Contrary to previous designs, its transconductance depends on the size of the input
transistors and a control voltage only.

To illustrate the entire filter design procedure, in Section V a 10th-order dynamic
translinear Morlet filter will be presented. Simulations and measurements will demon-
strate an excellent approximation of the Morlet wavelet base. The circuit operates
from a 1.2-V supply and a bias current of 1.2μA.

1 Although there is no preference for either a differentiator or integrator from a transfer-function or topo-
logical point of view, at circuit level, the use of differentiators often gives rise to high-frequency problems or
instability. Therefore, in a filter, almost always integrators are employed.



II. Designing the filter transfer function

In the filter transfer function design phase, the aim is to generate a transfer function
that satisfies the desired specifications, which may concern, in the frequency domain:
the amplitude (or magnitude) response, the phase response — together with the am-
plitude response grouped in the two so-called Bode plots —, the group delay, the
cutoff frequency, the passband/stopband loss, the passband/stopband edges, the am-
plitude/phase/delay distortion; and in the time domain, the impulse/step responses
(including the overshoot, delay time and rise time).

The available methods for generating the filter transfer function can be classified
as closed-form or iterative. In closed-form methods, the transfer function is derived
from a set of closed-form formulas or transformations. Some classical closed-form
solutions are the so-called Butterworth, Chebyshev, Bessel-Thompson and elliptic
approximations. Iterative methods entail a considerable amount of computation but
can be used to design filters with arbitrary responses.

If the desired filter transfer function does not have an explicit expression, then the
splines interpolation method [1] can be used to generate the desired (idealized) filter
transfer function that can be used as a starting point for the filter design process.

Taking into account that in active filters the power consumption and the dynamic
range are proportional and inversely proportional to the order of the filter, respec-
tively, in this phase, the joint optimization of power consumption and dynamic range
means finding a low-order approximation of the Laplace transform of the desired filter
transfer function. In the sequel we will deal with two, relatively unknown, techniques
to come to such an approximation: the Padé approximation and the L2 approxima-
tion.

A. Padé approximation

The Padé approximation [2] is employed to approximate the Laplace transform of
the desired filter transfer function G(s) by a suitable rational function H(s) and is
characterized by the property that the coefficients of the Taylor series expansion of
H(s) around a selected point s = s0 coincide with the corresponding Taylor series
coefficients of G(s) up to the highest possible order, given the pre-specified degrees of
the numerator and denominator polynomials of H(s). If we denote the Padé approx-
imation H(s) at s = s0 and of order (m,n), with m ≤ n, by

H(s) =
p0(s − s0)

m + p1(s − s0)
m−1 + · · · + pm

(s − s0)n + q1(s − s0)n−1 + · · · + qn
, (1)

then there are n + m + 1 degrees of freedom, which generically makes it possible to
match exactly the first n + m + 1 coefficients of the Taylor series expansion of G(s)
around s = s0. As this matching problem can easily be rewritten as a system of



n+m+1 linear equations in the n+m+1 variables p0,p1, · · · ,pm, q1, · · · , qn, a unique
solution is obtained that is easy to compute. Moreover, a good match is guaranteed
between the given function G(s) and its approximation H(s) in a neighborhood of
the selected point s0.

However, there are also some disadvantages which limit the practical applicability
of this technique [3]. One important issue concerns the selection of the point s0. Note
that a good approximation of G(s) around one point in the (complex) Laplace domain
is not a requirement per se. A second important issue concerns stability, which does
not automatically result from the Padé approximation technique. For example, if
emphasis is put on obtaining a good fit for a particular s0, it may easily happen that
the resulting approximation becomes unstable. The trade-off between a good fit near
a certain point s = s0 and stability is a non-trivial problem. A third issue concerns
the choice of the degrees m and n of the numerator and denominator polynomials of
the rational approximation H(s). An unfortunate choice may yield an inconsistent
system of equations or an unstable approximation.

B. L2 approximation

An alternative to the Padé approximation is the so-called L2 approximation, which
offers a number of advantages [3]. First, on the conceptual level, it is quite appro-
priate to use the L2 norm to measure the quality of an approximation H(s) to the
function G(s). Another advantage of L2 approximation is that it can be applied in
the time domain as well as in the Laplace domain. According to Parseval’s equality,
minimization of the squared L2 norm of the difference between G(s) and H(s) over
the imaginary axis s = jω is equivalent to minimization of the squared L2 norm of
the difference between g(t) and h(t).

Particularly in the case of low order approximation, the L2 approximation problem
can be approached in a simple and straightforward way using standard numerical
optimization techniques and software.

III. Designing the filter topology

After we have completed the design of the filter transfer function, it is time to
design the filter topology. As there are many possible state-space descriptions for a
certain transfer function, there are many possible filter topologies. We will concentrate
on finding a filter topology that is optimized for both dynamic range and power
consumption.

As is well known from linear systems theory (see, e.g., [4]) any causal linear filter
of finite order n can be represented in the Laplace domain as a state-space system
(A,B,C,D) described by a set of associated polynomial equations of the form:

sX(s) = AX(s) + BU(s), (2)



Y (s) = CX(s) + DU(s), (3)

where U(s) denotes the scalar input to the filter, Y (s) the scalar filter output and
X(s) the state vector. The transfer function of the filter is given by:

H(s) = C(sI − A)−1B + D. (4)

A system’s dynamic range is essentially determined by the maximum processable
signal magnitude and the internally generated noise. It is well known that the system’s
controllability and observability gramians play a key role in the determination and
optimization of the dynamic range [5], [6]. The controllability (K) and observability
(W ) gramians are derived from the state space description and are computed by
solving the equivalent Lyapunov equations

AK + KAT + 2πBBT = 0, (5)

AT W + WA + 2πCTC = 0. (6)

As the dynamic range of a circuit is defined as the ratio of the maximum and
the minimum signal level that it can process, optimization of the dynamic range is
equivalent to the simultaneous maximization of the (distortionless) output swing and
the minimization of the overall noise contribution. In [7], Rocha gives a geometric
interpretation of the optimization of the dynamic range. A visualization of the op-
timization procedure can be seen in Fig. 1, for a system with three state variables.
The output swing is related via the controllability gramian to the space of ‘occurring’
state-space vectors. Under the assumption of a random input signal, the shape of
this space is generally a multidimensional ellipsoid. The constraint that each integra-
tor has a maximum representation capacity (M) defines a multidimensional cuboid,
which, for a distortionless transfer, should contain the former mentioned ellipsoid
completely. As the mean square radius of the ellipsoid is equivalent to the maximum
output swing, the output swing is maximal when the mean square radius is. This can
occur if and only if the ellipsoid becomes a spheroid. In that case the controllability
gramian is a diagonal matrix with equal diagonal entries, which means that all axes
of the ellipsoid have equal length. Thus, the first optimization step boils down to a
similarity transform, such that the controllability gramian of the new system becomes
a diagonal matrix with equal diagonal entries. In the second step of the optimization
procedure, the system is optimized with respect to its noise contribution. Rocha de-
fines another ellipsoid, which describes the noise that is added to the state vector in
each direction. While preserving the result of the first optimization step, it is possible
to rotate the state space, such that the observability gramian becomes a diagonal ma-
trix as well. In that case, the axes of the noise ellipsoid are aligned with the ‘system
axes’.



In [7] it is shown that, in order to maximize the dynamic range of the system, one
should minimize the objective functional, which represents the relative improvement
of the dynamic range and contains all parameters which are subject to manipulation
by the designer. The objective functional is given by

FDR =
maxi kii

(2π)2

∑
i

αi

Ci

wii, (7)

where kii and wii are the main diagonal elements of K and W , respectively, αi =∑
j |Aij| is the absolute sum of the elements on the i-th row of A, and Ci is the

capacitance in integrator i.
Finally, profiting from the well-known fact that the relative noise contribution of

an integrator decreases when the capacitance and bias current increase, we apply
noise scaling, i.e., we match an optimal capacitance distribution to the noise contri-
butions of each individual integrator, viz. the diagonal entries of W combined with
the coefficients in matrix A, resulting in [7]

Ci =

√
αiwiikii

∑
j

√
αjwjjkjj

. (8)
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Fig. 1. Dynamic range optimization based on the similarity transformation of K and W and
capacitance distribution. The coordinate axes represent the state variables and the cuboid represents
the maximum signal amplitude (M) that the integrators are able to handle. (a) The initial state
space representation (ellipsoid) is usually not well adapted to the integrator’s representations capacity
bounds (cuboid). (b) The (rotated) ellipsoid’s principal axes are now aligned to the coordinate axes,
as a result of the diagonalization procedure to the matrices K and W. (c) Finally, the optimized state
representation is obtained by scaling the state variables and the noise. Note that the sphere represents
the maximum possible mean square radius which can be fitted into the integrator’s capacity cuboid.

The drawback of a dynamic-range optimal system is that its state-space matrices
are generally fully dense, i.e., all the entries of the A, B, C matrices are filled with
nonzero elements. These coefficients will have to be mapped on circuit components
and will result in a complex circuit with a large number of interconnections. For high-
order filters it is therefore necessary to investigate how a realization of the desired

Ctot .



transfer function having sparser state-space matrices would compare to the one having
maximal dynamic range. Also, when designing high-order filters, it is very desirable to
concentrate on circuits that are less sensitive to component variations. It is known that
an optimal dynamic range system will also have optimal, i.e., minimal, sensitivity [8].
For a less complex circuit, it is possible, for instance, to reduce A to upper triangular
by a Schur decomposition and by this reducing the number of non-zero coefficients
in A. However, this transformation leads to an increase in the system noise and
consequently to an increase in the objective functional (7). Another possibility is the
orthonormal ladder structure [9], which is significantly sparser than the fully dense A
matrix of the dynamic-range optimal system and the Schur decomposition and still
presents a good behavior with respect to sensitivity. Fig. 2 shows a block diagram
of a general orthonormal ladder filter [9]. As shown in the block diagram, the filter
output is obtained from a linear combination of the outputs of all integrators.
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Fig. 2. Block diagram of an orthonormal ladder filter, (a) Leapfrog structure; (b) Output summing
stage

The A matrix of an orthonormal ladder filter is tridiagonal and is very nearly skew-
symmetric except for a single nonzero diagonal element. The B vector consists of all
zeros except for the Nth element. Another property of orthonormal ladder filters is
the fact that the resulting circuits are inherently state scaled, i.e., the controllability
gramian is already a identity matrix. The drawback of this structure is that the
system is not optimized with respect to its noise contribution. However, if an optimal
capacitance distribution is applied to this suboptimal system, it can still yield some
extra gain compared to the case of equal capacitances. Often this leads to a filter
topology that is not too complex and has a dynamic range that is close (i.e., within
a few dBs) to optimal.



IV. Designing the filter circuit

After an optimal filter topology has been selected and the appropriate coefficients
have been chosen, it’s time to design the filter circuit, or more specifically, design the
filter’s main building block, viz. the integrator.

A. Four integrator classes

In order to be able to construct the filter topology, the transfer of the integrators
should be dimensionless. On a chip, the integrating element is a capacitor, which
can be employed as a (passive) capacitance or as part of an active transcapacitance
(amplifier) and whose transfer has a dimension equal to [Ω]. To realize a dimensionless
integrator transfer function, we thus need an additional (trans)conductance. Hence,
four types of integrators can be distinguished:

a conductance-capacitance integrators,
b conductance-transcapacitance integrators,
c transconductance-capacitance (gm-C) integrators, and
d transconductance-transcapacitance integrators.

Fig. 3 depicts the four integrator types that implement a voltage-to-voltage integra-
tion.
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Fig. 3. Four classes of integrators

The conductance-capacitance integrator does not use active components. Both the
required conductance and integration are implemented passively. As a result, using
this type of integrator, it is not possible to implement filter transfer functions with
complex poles.



The second type of integrator, the conductance-transcapacitance integrator, does
not have this drawback and is thus used more often. In this type of integrator, the
realization of the actual integration function is an active transcapacitance, often com-
prising an operational amplifier (op amp) having a capacitor in its (shunt) feedback
path. The opamp can be designed to operate rail-to-rail at the output terminals,
so full advantage is taken of the supply voltage, which entails an optimal dynamic
range. The conductance can be integrated as a diffused resistor, but it could also be
implemented as an MOS transistor in the triode region thus yielding a MOSFET-C
integrator [10].

The third integrator type, the transconductance-capacitance (gm-C) integrator,
makes use of active conductances, i.e., transconductances. The advantage of transcon-
ductors is that they are able to operate at relatively high frequencies, because their
parasitic capacitances are in parallel with the integrator capacitors. Thus, they can
be accounted for easily in the dimensioning of the required capacitor [11]. A ma-
jor drawback, however, is that it is very difficult to implement transconductors with
rail-to-rail input capability.

The fourth type of integrator is the transconductance-transcapacitance integrator.
This integrator has no advantages over the second and third integrators mentioned.
An important disadvantage is the use of two active parts, both adding to the distor-
tion, the power consumption and the noise production.

In conclusion, the second and third type of integrators are preferred when designing
filters. For both types of integrators an active part is required.

B. ELIL and ELIN

As integrators consist of two parts, a (trans)conductance and a (trans)capacitance,
based on the relation of the intermediate quantity to the input and/or output quantity,
linear integrators, our main filter building blocks, can be further classified into two
categories [12]:

• externally linear, internally linear (ELIL), and
• externally linear, internally non-linear (ELIN).

Most of the known integrator types fall into the first category, being ELIL. In ELIL
integrators the intermediate quantity is linearly related to the input and output quan-
tities. Among them are the integrator topologies that are commonly referred to as
gm-C, MOSFET-C, opamp-RC, RC and even (albeit discrete time rather than con-
tinuous time) switched-capacitor (SC) integrators. As in ultra low-power (i.e., nano-
and micro-power) applications, resistors would become too large for integration on
chip, occupying a large chip area, having a small bandwidth or have large absolute
tolerances, and MOSFET conductances are bound to a limited dynamic range, we will
not deal with these any further in the sequel. Instead, we will introduce a novel type



of transconductor, employing MOSFETs operating in the triode region as (active)
transconductors.

For the second category, that of ELIN integrators, it holds that their external behav-
ior is precisely linear, yet the intermediate quantity is non-linearly related to its input
and output quantities. In here we find the subcategory of instantaneous compand-
ing2 integrators, i.e., the degree of compression/expansion at a given instant depends
only on the value of signals at that instant [12], [13]. Belonging to this subcategory,
the class of dynamic translinear [13] (also known as log-domain [14], [15], [16] or ex-
ponential state-space [17]) is probably the most well known. To the subcategory of
companding integrators, albeit discrete-time rather than continuous-time, also belong
switched current [18] and switched MOSFET [19], [20] integrators. We will give an
example of a dynamic translinear wavelet filter for biomedical applications in the next
section.

But first, as promised, we will introduce a transconductor employing MOSFETs
operating in the triode region.

C. A compact CMOS triode transconductor

On-chip realizations of large time constants are often required to design low cutoff-
frequency (in the Hz and sub-Hz range) continuous-time filters in applications such as
integrated sensors, biomedical signal processing and neural networks. To limit capac-
itors to practical values, a transconductor with an extremely small transconductance
gm (typically a few nA/V) is needed.

Previous works on low-voltage low-power CMOS techniques for obtaining very-low
transconductances essentially concentrated on the combination of voltage attenuation
at the input, source degeneration in the transconductor core and current splitting
at the output [21], [22], [23], [24], keeping the transconductor input transistor(s) in
saturation; whereas the lowest gm/ID ratio is obtained in strong-inversion triode-
region (SI-TR).

In [25], a low-gm pseudo-differential transconductor based on a four-quadrant mul-
tiplication scheme is presented, in which the drain voltage of a triode-operating tran-
sistor follows the incoming signal. Nevertheless, because triode operation needs to
be sustained, the input-signal swing is rather limited. Moreover, this solution only
applies to balanced structures. Although triode-transconductors, in which the signal
is directly connected to the input-transistor gate, have been successfully employed
in high-frequency gm-C filters [26], [27], their potential for very-low frequency filter
design has not been addressed as yet.

Here we present a novel SI-TR transconductor for application in ultra low-power
low-frequency gm-C filters, in which, contrary to previous approaches, the transcon-

2 Companding is a combination of compressing and expanding



ductance, gm, is being controlled by a voltage rather than by a current. In a SI-TR
MOSFET, by connecting the source terminal to one of the supply rails, a control volt-
age applied to the drain linearly adjusts gm, as the latter scales with the drain-source
voltage VDS. Since (W/L) offers a degree of freedom in the design of a particular
transconductance, VDS values well above the equivalent noise and offset of the bias
circuit can be set, while still obtaining a very-low gm. Consequently, filters with more
predictable transfer functions can be implemented. Owing to its extended linearity,
the SI-TR transconductor also handles larger signals, with no need for linearization
techniques.

The proposed transconductor is depicted in Fig. 4 [28]. Input transistors M1A-M1B

Fig. 4. Proposed triode-transconductor

have their drain voltages regulated by an auxiliary amplifier that comprises M2A-
M2B, M3A-M3B and bias current sources M5A-M5B. A simple current mirror M4A-M4B

provides a single-ended output. All transistors are assumed to be pair-wise matched.
Although the gate-source voltages of M3A and M4A are stacked, their values are below
the threshold voltages, so that the circuit still complies with low-voltage requirements.
The gate-voltage of M2A-M2B is set to VC = VTUNE − VGS2, whereas VB imposes a
bias current IB through M5A-M5B. Both voltages VB and VC are generated on chip.
Referring VTUNE to VDD, the transconductance of the entire circuit becomes:

gm = gm1 = β1VTUNE, (9)

with β1 = (W/L)1μpCox.
P-type input transistors were chosen because of their lower mobility and 1/f-noise

coefficients as compared to similar parameters of n-MOSFETs. Except for M1A-M1B

that stay in SI-TR, all remaining devices work in weak inversion and saturation. As-
suming M5A and M5B to be ideal current sources, the transconductor output resistance



rout is given by
rout ≈ rds1(1 + gm2rds2) (10)

Even though a common-drain configuration (M3B) is seen from the output node,
the transconductor still exhibits a relatively high output resistance, as the loop gain
around M2B and M3B is relatively large.

Internal voltages VB and VC are derived from the circuit shown in Fig. 5. The
generator is structurally alike the transconductor, with M1G, M2G and M3G matched
to their counterparts. An opamp equates the drain voltage to external voltage VTUNE,
so that VC ≈ VTUNE |VGS2G

|. Since VGS2G
= VGS2A

= VGS2B
, the expected value of VC is

achieved. A low-voltage OTA, with a topology similar to the one in [27], is employed
as opamp. A proper setting of the current gain B (B > 1) in current mirror M4G-
M5G guarantees an optimal signal swing at both input and output, ensuring class-A
operation of the transconductor.

Fig. 5. Bias generator

Analysis of the noise performance of the proposed transconductor reveals that, as
gm1rds1 � 1, the noise is dominated by the noise contributions of M2A and M2B. Their
equivalent input noise voltage power spectral densities Svn,2A/B,eq, in [V2/Hz] equal

Svn,eq =
2kT/gm2

(gm1rds1)
2 (11)

which is the minimum one can achieve from an SI-TR transconductor.
As the gate length of M1 is chosen considerably long to obtain a very-low gm1 , its

1/f noise is naturally minimized.
To back up the theoretical analysis, a SI-TR transconductor with gm in the order

of nA/V was designed. The design complies with VDD = 1.5V and a standard 0.35μm
n-well CMOS process, with typical parameters VTn = 0.50V, VTp = -0.60V, gn =

0.58V1/2, gp = 0.45V1/2, μn = 403cm2/Vs, μp = 129cm2/Vs and Cox = 446nF/cm2.
Flicker-noise coefficients are KFn = 2.81e-27A2s/V, KFp = 1.09e-27A2s/V, AFn =
1.40, AFn = 1.29 and EFn = EFp = 1.



The tuning interval ranges from 10mV to 50mV, which implies 1.1nA/V ≤ gm1 ≤
5.5nA/V. The optimal VAGND is 0.6V, theoretically limiting the signal amplitude to
185mV. Transistor sizes (in μm/μm) are (W/L)1 =(1.2/600), (W/L)2 = (10/100),
(W/L)3 = (12/2.4) and (W/L)4 = (W/L)5 = (40/40). These dimensions maximize
the signal swing at both input and output and trade off 1/f-noise and layout area.
At nominal VTUNE = 20mV, the calculated gm1 and common-mode current ID1,CM

are
2.2nA/V and 0.63nA, respectively. Setting B=1.5 results in IB ≈ 0.25nA, a good
compromise between signal swing, 1/f-noise, thermal noise and auxiliary-amplifier
power consumption.

Simulations were carried out using PSPICE 9.2 with Bsim3v3 models. For a 1kΩ
load, fixing Vin− at VAGND and sweeping Vin+, the gm1 dependence on the tuning
voltage (10mV ≤ VTUNE ≤ 50mV) is plotted in Fig. 6. The transconductance remains
almost constant in the linear region, scaling linearly with VDS1.

Fig. 6. Dependence of gm on signal level and tuning

Transconductor noise figures from PSPICE are in excellent agreement with the per-
formed noise calculations. The transconductor equivalent noise voltage for a 100mHz–
10Hz bandwidth is 260μVRMS. Similarly, the input-referred noise of the VC generator
is 42μVRMS, so that for the lowest VTUNE of 10mV, a tuning-to-noise ratio (TNR) of
47dB is obtained. Given that transistor geometries are well defined in modern fabri-
cation processes, gm can be controlled to a good extent, as it relies on (W/L)1 and
VTUNE only.

V. A 10th-order ultra low-power low-voltage dynamic translinear
wavelet filter

This last section illustrates the design procedure outlined in the previous sections
for implementing a filter whose impulse response is a Morlet [29]. The real part of this
particular wavelet is of special interest for the local analysis of non-stationary signals
as can be found in electrocardiograms. Its application in pacemaker frontends makes



an ultra low-power implementation mandatory. In the coming subsections, we first
derive a suitable Morlet filter transfer function. Subsequently, we optimize the Morlet
filter state-space description. Finally, we implement the optimized (orthonormal)
ladder structure with log-domain integrators as main building blocks. Simulations
and measurements that prove the correctness and robustness of the proposed design
methodology will be provided as well.

A. Designing the Morlet filter transfer function

The design of the Morlet filter transfer function takes off with the (real part of the)
desired impulse response g(t) of the Morlet filter, i.e., a Gaussian-windowed sinusoid:

g(t) = cos(5
√

2t)e−(t−3)2 , t ≥ 0. (12)

Since only causal filters can be implemented, this function is truncated at t = 0 and
a time shift t0 = 3 is introduced. The choice of this time shift involves an important
trade-off that has to be made with care. If t0 is chosen too small, the truncation
error becomes too large. On the other hand, if t0 is chosen too large, the function
to be approximated will become very flat near t = 0. This effectively introduces a
time-delay, which implies that a good fit can only be achieved with a filter of high
order and thus compromises the power consumption.

The Laplace transform of (12) is not yet a suitable rational function and thus a
low-order approximation has to be made. A [8/10] Padé approximation yields [30]:

H(s) = 0.9s8−13s7+177s6−618s5+345s4+7·104s3−4·105s2+2·106s−3·106
s10+13s9+336s8+3·103s7+4·104s6+2·105s5+2·106s4+8·106s3+4·107s2+9·107s+3·108 . (13)

Fig. 7 depicts the ideal (g(t)) and the approximated (h(t)) Morlet filter impulse
responses, respectively. A good fit can be observed.

B. Designing the Morlet filter topology

Applying the state-space optimization method described in Section III, we find that
the objective functional FDR becomes equal to 96.98. This is the absolute minimum
value of the objective functional associated with this transfer function.

To improve the state-space matrices’ sparsity without compromising the dynamic
range and sensitivity to parameter variations too much, an orthonormal ladder struc-
ture is implemented. The A, B, C and D matrices of this structure for the defined
transfer function are given by:
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 6.54 0 0 0 0 0 0 0 0
−6.54 0 1.83 0 0 0 0 0 0 0

0 −1.83 0 6.59 0 0 0 0 0 0
0 0 −6.59 0 2.72 0 0 0 0 0
0 0 0 −2.72 0 6.37 0 0 0 0
0 0 0 0 −6.37 0 3.89 0 0 0
0 0 0 0 0 −3.89 0 6.27 0 0
0 0 0 0 0 0 −6.27 0 5.88 0
0 0 0 0 0 0 0 −5.88 0 10.47
0 0 0 0 0 0 0 0 −10.47 −13.31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0

2.05

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C = [ 0.75 −1.34 0.75 0.68 −0.57 0.44 −0.002 −0.10 0.04 0 ],
D = [ 0 ] (14)



In order to minimize the noise contribution, an optimal capacitance distribution is
applied, resulting in a normalized capacitance distribution (C1, ...,C10) = C′(0.142, 0.162,

0.110, 0.117, 0.086, 0.091, 0.073, 0.080, 0.073, 0.061) , where C ′ represents the unit-less value
of the total capacitance expressed in F. This leads to an objective functional FDR =
147.90, which is not so far from the optimum case. The dynamic range has decreased
by only 1.83dB.

C. Designing the Morlet filter circuit

A simple bipolar multiple-input low-power log-domain integrator [31] will be used as
the basic building block for the implementation of the above state space description.
This log-domain integrator is shown in Fig. 8 [31]. A pair of log-domain cells with
opposite polarities and an integrating capacitor form the core of the integrator. Vip

and Vin are the noninverting and inverting input voltages, respectively, and the input
currents are Iip and Iin, which are superimposed on the dc bias currents. The output
voltage Vo is given by the voltage across the capacitor. The circuit is composed of two
identical log-domains cells, a voltage buffer and a current mirror. The log-domain cells
Q1-Q2 and Q3-Q4 generate the log-domain currents Ic2 and Ic4, respectively. A voltage
buffer realized by Q5-Q6 is inserted between them. Therefore, the output log-domain
voltage Vo at the emitter of Q2 also appears at the emitter of Q4. Finally, to obtain a
log-domain integrator equation, we use a current mirror Q7-Q8 to realize the difference
between the two log-domain currents on the capacitor node. The connection from the
bases of transistors Q7 and Q8 to the collector of Q6 closes the feedback loop around
Q6 and Q7. This connection is convenient because it ensures that the overall voltage
headroom is minimized. The equation that relates the input and output voltages to
the current flowing in the integrating capacitor becomes

Ci
dVo

dt
= (Io + Iip)e

Vip−Vo

VT − (Io + Iin)e
Vin−Vo

VT . (15)

Notice that the input and output voltages of the integrator are at the same dc level.
Therefore log-domain filter synthesis can easily be achieved by direct coupling of these
integrators.

D. Synthesis of the log-domain state-space filter

By applying a simple mapping to the linear state-space equations (14), we can
obtain the corresponding log-domain circuit realization which employs the above log-
domain integrator.

The block diagram of the log-domain implementation of (14) is illustrated in Fig.
9, using the universal log-domain cell symbol described in [32] and shown in Fig. 8b.
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Fig. 8. a) The multiple-input low power log-domain integrator, and (b) its symbol [30]

Note that each column of the filter structure corresponds to a row in the state-space
formulation. The parameter Aij is implemented by the corresponding log-domain
integrator with bias current IAij

, defined by a current matrix AI

AI = VT Ci · A (16)

The input section, as governed by the state-space vector B, is realized by the first
row from the top of Fig. 9. The parameter B is related to the current by

B =
Io

VT Ci
(17)

Consequently, the B coefficients are not individually controllable by bias currents,
and they have to be set equal to each other or to zero. Fortunately, this is the case
in (14), where only one non-zero parameter of the B vector is present, as then it is
not necessary to transpose the state-space system. The bias current vector CI , which
controls the vector C, is defined as

CI = Io · C (18)

E. Simulation and measurement results

To validate the circuit principle, we have simulated the log-domain state-space filter
using models of IBM’s 0.18μm BiCMOS IC technology. The circuit has been designed
to operate from a 1.2V supply. Fig. 10 shows the impulse response of the wavelet
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Fig. 9. Complete state-space filter structure

filter. The excellent approximation of the Morlet wavelet can be compared with the
ideal Morlet function to confirm the performance of the log-domain filter. Fig. 11
shows the Monte Carlo analysis for process and mismatch variation of the technology
in use. As evident from the Monte Carlo simulation (i.e. after 100 runs), the system
characteristics show insensitivity towards both absolute and relative variations in the
process parameters. Even though the impulse response may be slightly affected, the
targeted wavelet analysis will be preserved.

Subsequently, the Morlet filter was implemented in the same IC technology. Fig. 12
shows a photomicrograph of the chip. The 10 integrator capacitors are clearly visible.
Fig. 13 shows the measured impulse response. An excellent agreement with both the
simulated impulse response and the ideal Morlet function (Fig. 10) can be observed.

The total filter’s current consumption is 1.5μA with a 100pF total capacitance. The
output current presents an offset of approximately 46.61pA. The rms output current
noise is 66.97pA, resulting in a DR at the 1-dB compression point of approximately
30dB. The power efficiency of any bandpass continuous-time filter is a figure of merit
to be able to compare various filter topologies and can be estimated by means of the
power dissipation per pole, center frequency (fc), and quality factor (Q) defined as
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[33]

Power per pole & bandwidth =
Pdiss

n · fc · Q, (19)

where Pdiss is the total power dissipation and n is the order of the filter. The power
efficiency of this filter equals 11.83pJ.

By changing the values of the bias currents along a dyadic sequence, one can obtain
the impulse responses of a dyadic scale system, as illustrated in Fig. 14. Alternatively,
one also may change the capacitance values, Ci. To implement a wavelet system, which
usually consists of 5 dyadic scales, one needs to implement a filter bank (a parallel



Fig. 12. Photomicrograph of the implemented Morlet filter

structure) with a total capacitance of 193.75pF, preserving the same bias current.
This result indicates that a wavelet system is feasible.

Finally, in order to show that the same procedure can be applied for high frequency
applications, we tuned the frequency response of the filter by varying the bias current
over about four decades with center frequencies ranging from 5.8kHz to 58MHz, while
preserving the impulse response waveform. Again, one can obtain the wavelet scales
around this frequency (i.e. 58 MHz) by either scaling the current or the capacitance
value accordingly. The performance of the filter is summarized in Table I.

VI. Conclusions

Filtering is an indispensable elementary signal processing function in many elec-
tronic systems. In many critical applications, e.g., in portable, wearable, implantable
and injectable devices, one should maximize the dynamic range and, at the same time,
minimize the power consumption of the filter. This joint optimization can take place
in different phases, the filter transfer function design phase, the filter topology design
phase, and the filter circuit design phase.

In the filter transfer function design phase, the filter functional input-output rela-
tion is mapped on a suitable filter transfer function. Two approximation techniques
were introduced: the Padé approximation and the L2 approximation. The Padé ap-
proximation is employed to approximate the Laplace transform of the desired filter



Fig. 13. Measured impulse response

transfer function G(s) by a suitable rational function around a selected point. The
L2 approximation offers a more global approximation, i.e., not concentrating on one
particular point, and has the advantage that it can be applied in the time domain as
well as in the Laplace domain. It is based on the minimization of the squared L2 norm
of the difference between the desired transfer function and the approximation H(s)
over the imaginary axis s = jω, which is equivalent to minimization of the squared L2

norm of the difference between g(t) and h(t).

In the filter topology design phase, the filter transfer function is mapped on a
suitable filter topology. For this, the filter transfer function is written in the form of a
state-space description, which subsequently is optimized for dynamic range, sparsity
and sensitivity. In the determination and optimization of the dynamic range the
filter’s controllability and observability gramians play an important role. Dynamic
range optimization boils down to transforming the controllability gramian such that it
becomes a diagonal matrix with equal diagonal entries, transforming the observability
gramian such that it also becomes a diagonal matrix, and capacitance distribution.
To improve the state-space matrices’ sparsity the dynamic-range optimized matrices
can be transformed into a form that describes an orthonormal ladder filter. After
applying capacitance distribution, a filter topology is found that is not too complex
and has a dynamic range that is close (i.e., within a few dBs) to optimal.

Finally, in the filter circuit design phase, the filter topology is mapped on a circuit.
A classification of integrators was presented. Falling in the category of transcon-
ductance-capacitance (gm-C) integrators, a novel nA/V CMOS transconductor for
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ultra-low power low-frequency gm-C filters was introduced. Its input transistors are
kept in the triode-region to benefit from the lowest gm/ID ratio. The gm is adjusted
by a well defined (W/L) and VDS, the latter a replica of the tuning voltage VTUNE.
The resulting design complies with VDD=1.5V and a 0.35μm CMOS process. Its
transconductance ranges from 1.1nA/V to 5.5nA/V for 10mV ≤ VTUNE ≤ 50mV.

To illustrate the entire filter design procedure, a dynamic translinear Morlet filter
has been designed. Simulations and measurements demonstrate an excellent approx-
imation of the Morlet wavelet base. The circuit operates from a 1.2-V supply and a
bias current of 1.2μA.
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Technology 0.18μm BiCMOS
Bias current Io = 1nA Io = 10μA
Total capacitance 100pF 100pF
Supply voltage 1.2V 1.8V
Center frequency (fc) 5.8kHz 58MHz
Power dissipation 1.5 μW 24.3mW
Dynamic Range (1-dB) 30 dB 30 dB
Noise current (rms) 66.97pA 481.3nA
Supply voltage range 1V - 1.6V 1.7V - 2.1V
Power dissipation per pole
fc and Q 11.834pJ 13.96pJ

TABLE I
Performance per scale for two different operating frequencies
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