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Transactions Briefs

An Instantaneous and Syllabic Companding
Translinear Filter

J. Mulder, W. A. Serdijn, A. C. van der Woerd,
and A. H. M. van Roermund

Abstract—An inherent characteristic of most translinear (TL) filters is
instantaneouscompanding. This brief describes a distortionlesssyllabic
companding TL filter based on the “analog floating-point technique”
[1]. Through the addition of a compensation current to each of the
capacitances in the filter, distortion is eliminated. By applying syllabic
companding to a TL filter, the input current can be much larger than the
quiescent current, thus increasing the dynamic range.

Index Terms—Companding, continuous-time filters, current-mode.

I. INTRODUCTION

A circuit technique receiving increasing interest in the field of
analog electronics is the area of translinear (TL) filters. TL filters were
introduced by Adams [2] and reintroduced by Seevinck [3]. In both
[2] and [3], only first-order filters were presented. The technique was
generalized to filters of arbitrary order by Frey [4]. TL filters exploit
the exponential law describing the bipolar transistor or the MOS
transistor operating in the subthreshold region. A generalization of the
underlying principle to the square law behavior of MOS transistors
operating in strong inversion was proposed in [5].

TL filters comprise only transistors and capacitors. The superfluity
of resistors is an advantage in a low-power environment [6]. Most
TL filters are instantaneously companding, which makes them espe-
cially interesting for low-voltage designs where the trend to lower
supply voltages directly limits the dynamic range obtainable using
conventional filter implementation techniques.

The exponential law is exploited not only for companding, but also
to implement multiplication of currents using the TL principle [7].
In fact, TL filters can be described completely in terms of currents
[8]. As a consequence, they can be regarded as an extension of the
TL principle toward dynamic transfer functions. Therefore, we have
adopted the termdynamic translinear principle[9].

Using the conventional TL principle, it is possible to implement
nonlinear static transfer functions. Combining these nonlinear static
functions with the dynamic TL principle, it is quite obvious that it will
also be possible to apply the dynamic TL principle to the realization
of nonlinear dynamic systems. That is, the dynamic TL principle
facilitates direct implementation of nonlinear differential equations,
e.g., limit cycles (i.e., oscillators) [10], rms–dc conversion [9], and
even chaos.

TL filters can also be regarded as a subclass of the class of
distortionless compandingfilters. This concept was introduced in [1]
and [11] with respect to syllabic companding, where the compression
factor is derived from some function of the average strength of
the input or output signal. A general description including instan-
taneous companding—where the compression factor depends on the
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Fig. 1. Generic output structures of (a) log-domain filters, (b)tanh filters,
(c) sinh filters, and (d)

p
-domain filters.

instantaneous value of the input or output signal—was presented in
[12].

In [11], the distortionless syllabic companding concept was applied
to a range-switching�� analog-to-digital converter (ADC) and
in [1] to a range-switching OTA-C filter. In [13], a continuously-
updating operational transconductance-capacitance (OTA-C) filter
was reported. In this brief, it is shown that syllabic companding can
also be implemented quite elegantly using the dynamic TL principle.
Syllabic companding can be applied to increase the dynamic range
of a TL filter. First, the instantaneous companding behavior of TL
filters is treated in Section II. The theory of distortionless syllabic
companding [1], [11]–[13] is explained in Section III and an im-
plementation technique for TL filters is derived. The compensation
technique is applied to a TL syllabic companding second-order low-
pass Butterworth filter, which is described in Section IV. Simulations,
presented in Section V, demonstrate the correct operation of the
principle.

II. I NSTANTANEOUS COMPANDING

The class of TL filters can be divided into several subclasses,
four of which have been reported in literature. The subclasses of
log-domain filters [2], tanh, and sinh filters [14] depend on the
exponential behavior of the bipolar transistor, or the MOS transistor
in the subthreshold region. The subclass of

p
-domain filters [5] is

based on the quadratic behavior of the MOS transistor in the strong
inversion region.

In Fig. 1, the generic output structures of these four types of filters
are shown. The dynamic TL principle [9] on which all dynamic
TL circuits are based can be explained with reference to these
output structures. The key to dynamic TL circuits are the capacitance
currents, which are nonlinearly related to the collector or drain
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Fig. 2. TheV � I transfer functions of the circuits shown in Fig. 1.

currents. For example, the capacitance currentIcap flowing through
the capacitanceC shown in Fig. 1(a), is given by [8]

Icap = CUT

_Iout
Iout

(1)

whereUT is the thermal voltage,Iout is the collector current, and
the dot represents differentiation with respect to time. Clearly,Icap
is nonlinearly related toIout, thus expressing the instantaneous
companding inherently present.

The dynamic TL principle becomes clear if we multiply (1) by the
strictly positive denominatorIout, which yields

CUT
_Iout = Icap � Iout: (2)

Thus, the dynamic TL principle states thatthe derivative of a
current can be replaced by a product of currents. This product of
currents is implemented by means of the conventional TL principle
[7]. Consequently, the dynamic TL principle can be regarded as a
generalization of the conventional, i.e., static TL principle. For tanh,
sinh, and

p
-domain filters, similar relations can be found.

Although the voltages in a TL circuit are logarithmically related
to the currents, not all TL filters are companding. In Fig. 2, the
V � I transfer functions from the capacitance voltages to the output
currents are depicted for the four output structures shown in Fig. 1.
Fig. 2 clearly shows that the exponential function, the hyperbolic sine
function, and the square function are expanding. In other words, the
second derivative of each of these functions is positive forx ; 0.
However, the hyperbolic tangent function is a compressing function.
Therefore, tanh filters are not companding, but show the opposite
behavior.

In TL circuits, the instantaneous companding only applies to the
I � V andV � I conversion at the input and output of the circuit,
respectively. Instantaneous companding is interesting with respect to
the limited supply voltage. However, this type of companding has
very little influence on the currents in a TL filter. The currents are
not compressed. It is important to note that instantaneous companding
does not affect the input current range of a TL filter. Filters operating
in class A, like log-domain,

p
-domain, and tanh filters, need a dc

bias current, on which the actual ac input signal is superposed. The
maximal amplitude of the input current is restricted to the value of
this bias current. Higher values result in clipping distortion.

The dynamic range can be enlarged by class AB operation of the
filters. In theory, the dynamic range of class AB TL filters is infinite.
However, in practice, the finite current gain of the bipolar transistor
limits the maximal current swing to about ten times the value of the
quiescent current [15]. Higher values result in soft distortion.

For both class A and class AB TL filters, a further increase of the
dynamic range can be accomplished by applying syllabic companding

Fig. 3. First-order low-pass TL filter.

based on the analog floating-point technique [1], [11]–[13]. The
nature of syllabic companding in TL filters is different from the
instantaneous companding inherently present. In a syllabic compand-
ing setup, the input currentIin is compressed by multiplying it by
a positive signalg, resulting in a compressed currentI�in, which is
supplied to the core TL filter. When the signalg is a suitable function
of the average strength ofIin, the core TL filter will only have to
process relatively small signals, i.e.,I�in, irrespective of the amplitude
of Iin.

III. SYLLABIC COMPANDING

The analog floating point technique [1], [11], which theoretically
establishes distortionless syllabic companding, will be explained with
respect to the TL lossy integrator shown in Fig. 3. This filter is
derived from a circuit in [2]. The lossy integrator can be described
by a current-mode differential equation [2], [8]:

CUT
_Iout + IoutIo = IinIo: (3)

The termIoutIo on the left-hand side of this equation accounts for the
loss of the integrator. This term is realized in the TL circuit through
the current sourceIo flowing through transistorQ3.

In a syllabic companding system, the input signal is multiplied by
a positive factorg at the input and divided byg at the output. The
value ofg is derived from some measure of the average strength of
the input or output signal. In a distortionless companding system, this
is equivalent to multiplying the differential equation describing the
filter by g [12], [13]. For the circuit shown in Fig. 3 this yields

CUT g _Iout + gIoutIo = gIinIo: (4)

Sinceg 6= 0; (4) still has the same unique solution as (3).
The multiplication and division at the input and output, respec-

tively, can be realized using the TL principle. Since it is not possible
electronically to multiply by a dimensionless signal, we transformg
into a currentIg through the equivalence relationg = Ig=Io [16]. The
multiplication can now be implemented, e.g., by a TL multiplier [17].

Within the core TL filter only the compressed signalsI�in and
I�out are available. Therefore, (4) has to be rewritten in terms of
these variables. The relations between the original signals and the
compressed ones are described by

I�in = gIin (5)

I�out = gIout (6)

g _Iout = _I�out � _g

g
I�out (7)

where (7) is obtained from the time derivative of (6).
Especially note the second term on the right-hand side of (7).

This term must be incorporated to ensure distortionless companding.
Without this term, significant intermodulation distortion results when
the frequency of the compression signalg is not much lower than the
frequency band of the input signal.
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Fig. 4. Generation of the compensation currentIC .

Substitution of the above equations in (4) and applying the trans-
formation g = Ig=Io yields a differential equation in terms ofI�in
and I�out:

CUT _I�out + I�out Io � CUT
_Ig
Ig

= I�inIo: (8)

Comparison of this equation with (3) reveals that the compensation
term becomes a currentCUT _Ig=Ig, which is subtracted from the
currentIo flowing throughQ3 in the lossy integrator shown in Fig. 3.
The similarity between this compensation current and the capacitance
current described in (1) suggests that the compensation current can
be generated by the output structure shown in Fig. 1(a). The circuit
of Fig. 4 generates the required compensation currentIC from Ig.
The output currentIC of this circuit is given by

IC = CUT
_Ig
Ig
: (9)

Substitution of this expression in (8) yields

CUT _I�out + I�out(Io � IC ) = I�inIo: (10)

A currentIo is added toIC to enable discharging of the capacitance.
The compensation current is distributed to the capacitance in the lossy
integrator by means of a p-n-p current mirror. As a result, the transfer
function of the filter still satisfies the linear differential equation (3).

The form of the compensation term_g=g is not specific for TL
implementations of syllabic companding [12]. Consequently, the
circuit generating this compensation current can be used as an
alternative to the implementation presented in [13].

The above description can be generalized to filters ofnth order
[12]. The state-space description of annth-order filter is multiplied
by a time-varyingn � n matrix G, of which all n2 elements can in
principle be different functions. An implementation of the general
principle will result in a considerable overhead. The result will be a
fully connected filter topology, requiringn2 multipliers, dividers, and
generators of the different elements ofG. Furthermore, at present,
the benefits of such an elaborate implementation over less general
implementations are not clear. Therefore, we will restrict ourselves
to the situation where one multiplier is placed in front of the core TL
filter. This is equivalent to a matrixG = g � I, whereg is a single
compression function andI the identity matrix of ordern. For TL
filters, in this special case, the same compensation currentIC has
to be distributed to all the capacitances in thenth-order filter.

Fig. 5. A second-order low-pass Butterworth filter.

IV. A SYLLABIC COMPANDING TRANSLINEAR FILTER

In this section, the analog floating point technique [1], [11] is
applied to a second-order low-pass Butterworth filter, applying the
compensation circuit developed in the previous section.

A second-order low-pass Butterworth filter can be realized by
means of an overall unity negative feedback loop around a cascade
of two lossy integrators, resulting in the well-known filter structure
shown in Fig. 5. The TL lossy integrator shown in Fig. 3 can be
applied in the block schematic shown in Fig. 5. A p-n-p Wilson
current mirror inverts the output current of the second lossy integrator
before feeding it back to the input. The cutoff frequency!c of the
complete second-order filter is given by!c =

p
2Io=(CUT ).

In TL filters operating in class A, the actual ac input currentIin
is always superposed on a dc bias currentIDC. This bias current
limits the maximal input signal level and, hence, the dynamic range
of the filter. The dynamic range can be enlarged by compressingIin
before entering the filter. Obviously,IDC should not be compressed.
Otherwise, the input modulation index does not change and, hence,
the dynamic range does not improve. Consequently, the compressed
currentI�in should be superposed on the same bias currentIDC.

However, companding introduces local nonlinear behavior. As a
consequence, the superposition principle cannot be applied ifIin is
compressed, butIDC is not. If a currentIDC + I�in is applied toQ2,
shown in Fig. 3, the compressed output currentI�out will contain an
error term. The relation betweenI�in andI�out is described by

CUT _I�out + I�out(Io � IC )� IC IDC = IoI
�

in: (11)

A comparison of this differential equation with (10) reveals the error:
the termIC IDC on the left-hand side of (11).

The error term depends on the compression signalg and not
directly on the input signalIin. Therefore, in a differential filter
setup, which is common practice, the error term is a common mode
signal and is eliminated in the differential mode output current.
Consequently, we have implemented the filter shown in Fig. 5 in
a differential setup.

V. SIMULATION RESULTS

The effects of syllabic companding on the differential second-
order Butterworth filter were simulated using realistic minimum-sized
transistor models from a 3-GHz BiCMOS process. The current gain
of the transistors, an important second-order effect in TL circuits, is
180 and 40 for the n-p-n transistors and the vertical p-n-p transistors,
respectively.

In Fig. 6, a large-signal (harmonic balance) ac analysis of the filter
is shown. In the simulations, the capacitance of the lossy integrator
is 1224 pF. The currentIo is 200�A andUT is 26 mV. This results
in a cutoff frequency offc = 1:41 MHz for the second-order filter.

The dc input current of the Butterworth filter isIDC = 400 �A,
resulting in a maximum input current amplitude of 200�A. In the
simulation shown in Fig. 6, the modulation index ofIin with respect
to the maximal input current amplitude of 200�A is 50%.

Next, the influence of syllabic companding on the distortion of the
complete filter was simulated. In theory, a syllabic companding filter
has an infinite dynamic range. WhenIin has a constant envelope, the
signalg will be constant and the multiplication at the input of the filter



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 2, FEBRUARY 1998 153

Fig. 6. Large-signal ac analysis of the translinear Butterworth filter without
syllabic companding.

Fig. 7. Output spectrum without compensation for syllabic companding.

does not generate distortion. In a practical syllabic companding setup,
g is generated, e.g., by means of a rectifier followed by a filter [13].
The ripple left ong for a constant envelope input current, e.g., a sine
wave, will determine the distortion of a syllabic companding filter
without application of the analog floating-point technique. Therefore,
this setup is not very suitable to simulate the effects of the dynamic
TL compensation circuit shown in Fig. 4; the results will depend very
much on the implementation of the circuit generating the compression
signal g.

Further, the ripple left ong will contain frequency components at
the harmonics of the input currentIin. Consequently, the intermod-
ulation distortion produced by the multiplication ofg andIin cannot
be distinguished from the harmonic distortion of the core TL filter, as
these distortion components will be situated at identical frequencies.

As a consequence, for illustration purposes it is much more
convenient to defineg independently fromIin.

At low frequencies, with respect to!c, a time-varying signalg
will not introduce much distortion because the memory of the filter
is much shorter than the period ofg. In a worst-case situation, the
frequency ofg is close to or above the cutoff frequency of the filter.

In the simulations shown in Figs. 7 and 8,Iin has a frequency of
1 MHz and a modulation index of 50%. The compression signalg,
defined independently fromIin, has a frequency of 900 kHz and a
modulation index of 20%, i.e,g = 1 + 0:2 sin(2� � 900 kHz � t):

Fig. 7 shows the spectrum of the uncompressed output currentIout

without application of the dynamic TL compensation circuit shown
in Fig. 4. Clearly, significant intermodulation distortion has resulted
from the syllabic companding. The components at the difference and
sum frequency are only 20.0 and 24.4 dB, respectively, below the
input current level.

Fig. 8. Output spectrum with compensation for syllabic companding.

In Fig. 8, the compensation circuit is activated, by distributing the
currentIC to each of the capacitances in the Butterworth filter. The
components at the difference and sum frequency are now 42.7 and
60.0 dB, respectively, below the input current level. Consequently,
the dynamic TL compensation circuit reduces the distortion by 23
dB. The distortion is not completely eliminated due to second-order
effects.

VI. CONCLUSIONS

In this brief, it was shown that the analog floating-point technique,
facilitating distortionlesssyllabic companding, can be implemented
quite easily in TL filters, next to theinstantaneouscompanding
inherently present. Distortionless syllabic companding is obtained
by generating a compensation current dependent on the compression
signal, and adding it to all capacitance currents within the TL. The
circuit used to generate the compensation current can also be applied
to, e.g., OTA-C filters. The principle was verified through simulations
of a second-order translinear Butterworth filter.
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The Study of the Relation Between Noise
Model and Noise Model of an Amplifier

Jiansheng Xu, Yisong Dai, and Li Yaqen

Abstract—The Rn � Gn noise model can only be used in the case of
microwave low-noise amplifier design. Its application scopes are limited
and in particular, it cannot be used in low-frequency low-noise amplifier
design. This paper has adopted theEn � In noise model with spectral
correlative coefficient (SCC) so that it can be used not only in high-
frequency and narrow-band, but also in low frequency, source reactance,
and wide-band amplifier low-noise design. In this paper, the equivalent
relation between theEn� In noise model and theRn�Gn noise model
is derived, and the measurement method of theEn � In noise model
parameters and the measurement results are given. TheRn �Gn noise
model parameters can be accurately obtained by use of the equivalent
relation.

Index Terms—Amplifiers, noise model equivalence, spectral correlative
coefficient.

I. INTRODUCTION

In microwave-band low-noise amplifier design, the noise per-
formance of an amplifier can be represented byRn � Gn noise
model parameters, namely the equivalent noise resistanceRn,
equivalent noise conductanceGn, and the correlation admittance
Ycor = Gcor � jBcor. TheRn � Gn noise model can still be used
to calculate amplifier low-noise design parameterF0, G0, andB0, in
which F0 is the minimum noise figure which occurs for an optimum
source admittance whose real and imaginary parts are, respectively,
G0 and B0. In terms ofG0, B0, and F0, the noise figure of an
amplifier becomes

F = F0 +
Rn

Gs

(GS �G0)
2 + (BS �B0)

2 (1)
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where

F0 =1 + 2Rn(Gcor +G0)

G0 =
Gn +RnG2

cor

Rn

B0 =�Bcor:

Although theRn � Gn noise model has been widely used in
microwave-amplifier low-noise design, there still exist some defects.
The Rn � Gn noise model is usually obtained through the mea-
surement of the noise figure. However, the noise figure cannot be
measured directly in low-frequency band. Therefore, its application
scopes have some limitations, especially if the source impedance
is pure reactance, namelyGs = 0, where the noise figure concept
cannot be applied because ofF =1. Also, for wide-band amplifier
low-noise design, the model has the some difficulties. Thus, the
Rn �Gn noise model can only be used in the cases of microwave-
band, narrow-band, and source-impedance(Gs 6= 0) amplifier low-
noise design. However, with the development of infrared detector,
acoustics, and transducer technology there is an urgent need for low-
frequency and wide-band amplifier low-noise design. Therefore, we
have to use other models to solve these problems.

TheEn� In noise model was first proposed by Rothe and Dahlke
[1], [2] in 1956, and was then systematized by Motchenbacher
and Fitchen. Its advantages are that the model can be used in
low-frequency wide-band amplifier low-noise design through the
calculation of equivalent input noise powerE2

ns. The problem is
that the model has the correlation coefficientC, which allows the
model to only be used in source resistance. The model is also not
equivalent to theRn � Gn noise model.

According to theEn � In noise model, we have considered the
spectral correlative coefficient (SCC)
 in this paper, with the goal
of making the model perfect. The improvedEn � In noise model
has a definite physics concept, can be used in microwave and low-
frequency bands, and can also be used in the conditions of source
reactance and wide band. Then, the equivalent relation between the
En�In noise model and theRn�Gn noise model has been derived,
which proves that theEn�In noise model with SCC(
) is equivalent
to theRn � Gn noise model, and also shows that the noise model
with SCC is reasonably robust. We then discuss the measurement
method of theEn � In noise model parameters. Through the two-
model equivalent relation,Rn �Gn noise model parameters can be
accurately obtained by using theEn � In noise model parameters
measured, which means that a new method to measuringRn � Gn

noise model parameters has been developed.

II. En � In NOISE MODEL AND AMPLIFIER

NOISE PERFORMANCE EXPRESSION

Let e and i denote, respectively, an amplifier equivalent-input
random voltage noise and current noise. Their noise power spectral
densities are represented bySe(f) andSi(f). If they are expressed
by a unit band (1 Hz), thenE2

n = Se(f) and I2n = Si(f). The
definition of the spectral correlation coefficient ofe andi noise power
is expressed as follows:


 = 
1 + j
2 =
Sei(f)

Se(f)Si(f)
(2)

whereSei(f) is the cross-spectral density betweene and i.
It must be noted that the definitions ofEn, In, and 
 here are

completely different from those ofEn, In, andC in [3]. The former
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