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which is not row sum dominant for allc > 1; d < 1 +
p
2, butS is

not row sum dominant and is not a nonsingularM -matrix. Define a set
Bcd:

Bcd = (c; d)jc > 1; 0 < d < 1 +
p
2;

2cd+ 2�
p
2 (c+ d) < 4

p
2 :

It is easily seen thatBcd 6= ; and the results of [4], [11], [18] cannot
be used as(c; d) 2 Bcd. However, take(c; d) = (1:1; 0:51) 2 Bcd,
r = 0, we can easily check that the conditions in theorem 1 or corollary
1 given herein are satisfied (here, the main theorem in [17] cannot also
be applied at this time). Hence system (1) has a unique and globally
asymptotically stable equilibrium point.

Our results provide two parametera; r to appropriately compensate
for the tradeoff between matrix definite condition on feedback matrix
and the norm inequality condition on delayed feedback matrix. The
less restrictive norm condition on the delayed feedback matrix is with
respect toa; r. Therefore, this condition herein is less restrictive than
that given in the earlier references.
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Abstract—Dynamic translinear circuits explore the exponential relation
of transistors as a primitive for the synthesis of electronic circuits. In this
letter, the linear time-varying approximation is applied to describe the dy-
namic behavior of a second-order dynamic-translinear oscillator. The Flo-
quet exponents are calculated by the earlier introduced dynamic eigen-
values.

Index Terms—Dynamic translinear circuits, log-domain, nonlinear dy-
namic circuits, linear time-varying approximation, stability, floquet expo-
nents.

I. INTRODUCTION

In the synthesis ofdynamic-translinear circuits(DTL circuits) the
exponential input-output relation of the bipolar transistor or of the MOS
transistor in its weak inversion regime, is used as a primitive. These cir-
cuits are based on the so-called dynamic translinear principle [1], a gen-
eralization of the well-known static translinear principle [2]. Whereas
conventional TL circuits can be used to implement various linear and
nonlinearstatictransfer functions, DTL circuits can implement a wide
variety ofdynamicfunctions, described by differential equations (DEs).
In this way, both linear DEs, e.g., filters [3]–[6], and nonlinear DEs,
e.g., oscillators [7], [8] can be realized.

The linear time-varying(LTV) approximationis a general method
to describe the local dynamics of nonlinear systems [9]. It is a consis-
tent generalization of the LTI small-signal approximation, in which the
eigenvalue and pole concept are generalized by means of the so-called
dynamiceigenvalue [10], [11].

In this letter, we apply the LTV approximation to describe the
dynamic behavior of a DTL oscillator. In Section II the dynamic
translinear principle is reviewed. Then, the LTV approximation is
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Fig. 1. Basic structure of DTL circuits.

introduced in Section III and subsequently applied to a DTL oscillator
in Section IV. Conclusions are drawn in Section V.

II. THE DYNAMIC -TRANSLINEAR PRINCIPLE

The static translinear principle can be extended in order to implement
differential equations, by adding capacitors in the TL loop [1]. The
DTL principle is explained referring to Fig. 1.

Using a formulation based on currents (ignoring the base current),
this circuit is described in terms of the collector currentIc and the
capacitor currentIcap, flowing through the capacitorC. CurrentIcap
in terms of products of currents is given by [1]

C � VT _Ic = Icap � Ic (1)

where the dot operator indicates differentiation with respect to the time
andVT is the thermal voltage. Equation (1) reflects the DTL principle:
a time derivative can be mapped onto a product of currents, allowing
us to map a DE onto a multivariable polynomial of currents.

III. L INEAR TIME-VARYING APPROACH

In this section we review the LTV approach [9]. A nonlinear circuit
can be described by the following state-space equation:

_w(t) = f(w(t); s(t)): (2)

Here,w ands are the state variable and the input vector, respectively,
while f represents a nonlinear vector function. The signal-dependent
bias trajectory ordynamic bias trajectorywb = wb(t)is given by the
nonlinear and time-dependent solution of

_wb = f(wb; sb) (3)

with sb denoting the external sources. The variational equation or LTV
small-signal model describes the dynamic behavior of the system by
considering small variations around the bias trajectorywb and the ex-
ternal signalsb, respectively. That is, we consider any state and any
external signal of the system to be composed of the sum

w = wb + x ands = sb + e (4)

wherex ande are relatively small variations in the state and in the
external signal, respectively. If we linearise the state-space (2) around
wb andsb, the following variational equation is obtained:

_x = A(t)x+B(t)e (5)

in which the system matrixA is the Jacobian off with respectw, and
B the Jacobian off with respect tos, both evaluated along the bias
trajectory.

Subsequently, we study the dynamic behavior using the relevant part
of the variational Eq. (5), i.e.,e is assumed to be zero

_x = A(t)x: (6)

The dynamic behavior of the system for given inputs can be de-
scribed by time-varying modes of the homogeneous variational equa-
tion (6). Thus, a solution of (6) can be written as a linear combination
of modesxi(t) [10]–[13]

x(t) =
i

xi(t) =
i

ui(t) exp[
i(t)] (7)

whereui(t) denotes a time-dependent amplitude, while the time-de-
pendent phase
i(t) is written as


i(t) =
t

0

�i(� )d� , _
i(t) = �i(t) (8)

in which�i(t) is a time-dependent frequency. Substitution of (7) in (6)
yields the followingdynamiceigenvalue problem:

(A� �iI)ui = _ui (9)

whereI is the unity matrix. Note that the classical static eigenvalue
problem results ifui is time independent. In the context of Eq. (9) the
physical quantitiesui(t) and�i(t) are called adynamiceigenvector
and adynamiceigenvalue, respectievly.

Next, the following transformation is applied:

x = L(t)y (10)

by which (6) goes into the new time-varying system

_y = (L�1AxL� L
�1 _L)y = C(t)y: (11)

On account of (7) and (10), the solutiony reads

y(t) =
i

L
�1(t)ui(t) exp[
i(t)] =

i

vi(t) exp[
i(t)] (12)

wherevi(t) is a dynamic eigenvector of the new system (11). Thus,
transformation (10) preserves the dynamic eigenvalues as defined in
(8). For this reason, the system matricesA andC are calleddynamic
similar [10]. In the next section, the dynamic similarity transformL is
chosen such thatC becomes an upper-triangular system matrix. Then,
the dynamic eigenvalues are its main diagonal elements [11], [12].

Finally, for periodic systems the Floquet exponents, given by

�i =
1

T

i(T ) =

1

T

T

0

�i(�)d� (13)

are a measure for stability.

IV. A NALYSIS OF A DTL OSCILLATOR

In this section, we apply the LTV approximation to the analysis of
the dynamic behavior of the DTL oscillator introduced in [8]. We show
that the dynamic eigenvalues of a second-order system can be found by
solving a scalar Riccati differential equation.

A. The Linear Time-Varying Approach for Second-Order Systems

We first give a systematic method to find the dynamic eigenvalues
of a second-order variational equation by applying a suitable dynamic
similarity transformation [13]. The problem is reduced to solving a
scalar Riccati differential equation. Then, we introduce a variable trans-
formation in order to obtain a linear equation, which is more suitable
for numerical calculation.
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Fig. 2. Circuit implementation of a DTL oscillator [8].

1) The Dynamic Eigenvalues:We start with the second-order vari-
ational state-equation

_x(t) = A(t)x(t),
d

dt

x1

x2
=

a11 a12

a21 a22

x1

x2
(14)

In order to find the dynamic eigenvalues, the dynamic eigenvalue
problem (9) has to be solved. The following dynamic similarity
transformationL(t) is applied tox(t):

x(t) = L(t)y(t),
x1

x2
=

1 0

l(t) 1

y1

y2
(15)

in whichl(t) is a time-dependent variable. The transformed variational
equation is given by

_y(t) = (L�1AxL � L
�1 _L)y(t) = C(t)y(t)

,
d

dt

y1

y2
=

�1(t) a12

0 �2(t)

y1

y2
(16)

provided thatl(t) in (15) is any solution of the scalar Riccati differential
equation

_l = �a12l
2 � (a11 � a22)l+ a21 (17)

and where the dynamic eigenvalues�1(t) and�2(t) are given by

�1(t) = a11(t) + l(t)a12(t) and

�2(t) = �l(t)a12(t) + a22(t): (18)

2) Transformation of the Riccati Differential Equation:If we deal
with a time-varying variational equation, the Riccati equation (17)
should be solved. In general, this equation has no analytical solution.
Even numerical calculation is difficult as singularities (finite escape
times) may be involved. In order to facilitate the calculations, we
introduce the new variableu(t) as

u(t) = exp
t

0

a12(t)l(t)dt , a12(t)l(t) =
_u(t)

u(t)
: (19)

By applying (19), the Riccati (17) goes into the following second-order
linear time-varying DE:

�a12(t)�u+ [ _a12(t)� a12(t)(a11(t)� a22(t))] _u

+ a12(t)
2
a21(t)u = 0 (20)

which on its turn is written in the state-space formulation

_u = q

_q =
_a12(t)� a12(t)(a11(t)� a22(t))

a12(t)
q + a12(t)a21(t)u

(21)

Fig. 3. Oscillator output as function of time forC = C = 5 nF,I = 817

uA, G = 1:2.

The new state-variablesu andq can be added to the original nonlinear
system (3): a fourth-order-state-space system results. The solutions of
this system are used to find both the dynamic bias trajectory and the
solutions of the two state-space variablesu andq, respectively. The
solution of the Riccati equationl(t) is given by

l(t) =
1

a12(t)

q

u
(22)

while the dynamic eigenvalues follow from (18). Since for the example
to be discussed the dynamic eigenvalues and eigenvectors are periodic,
we can use (13) to determine the Floquet exponents. In order to cal-
culate these exponents directly from the solution of the transformed
Riccati equation, we rewrite (19) as

t

0

a12(� )l(�)d� = ln[u(t)]: (23)

Then, substitution of (23) in (18) and using (13) yields

�1 =
1

T
ln(u) jt +T

t
+

1

T

T

0

a11(t)dt

�2 = �
1

T
ln(u) jt +T

t
+

1

T

T

0

a22(t)dt (24)

where�1 and�2 are the two Floquet exponents of the second-order
system.

B. DTL Second-Order Oscillator

The complete design of the second-order DTL oscillator is described
in [8]. The circuit diagram is depicted in Fig. 2. Here, we will use the
nonlinear differential equation describing this DTL oscillator [8]

C
2
V
2

T
�Iosc+CVT I02 1�GI

2

0

I20 � I2osc

(I20 + I2osc)
2

� _Iosc+I
2

0 Iosc = 0

(25)
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Fig. 4. Real part of the dynamic eigenvalue� (t) and� (t) as function of time.

in whichC = C1 = C2; VT is the thermal voltage,Iosc is the output
current of the oscillator (Iout in Fig. 2), I0 a bias current andG =
IG=I0 (IG is the tail current of the differential pair QN23-QN24 in
Fig. 2).

The oscillation frequency and amplitude are, respectively, given by
[8]

! =
I0

VTC
andÎosc = I0

p
G� 1: (26)

C. The LTV Approach Applied to the Second-Order DTL Oscillator

We now use the LTV approach to describe the dynamic behavior of
the DTL oscillator.

1) The State-Space Description:Rewriting (25), the oscillator can
be described as a state-space system like (2) withs(t) = 0 (w1 andw2

are the state-space variables)

_w1 = w2 � !w1

_w2 = 2GI20!
I20 � w2

1

(I20 + w2
1)

2
(w2 � !w1)� !w2

: (27)

2) The Dynamic Bias Trajectory:We consider the state variables
to consist of the sum

w1 = w1b + x1 andw2 = w2b + x2 (28)

wherew1b andw2b are the bias-trajectories of the state-variables and
x1; x2 are relatively small variations onw1b andw2b, respectively. The
dynamic bias trajectory is given by the solution of (27) forx1 = x2 =
0.

3) The Variational Equation:The variational equation (6) is ob-
tained from (27) as

d

dt

x1
x2

=
a11(t) a12(t)

a21(t) a22(t)

x1
x2

a11(t) =
@f1
@w1

(w1b; w2b) = �!

a12(t) =
@f1
@w2

(w1b; w2b) = 1 (29)

a21(t) =
@f2
@w1

(w1b; w2b)

= 2G!2I20
�w4

1b + 6I20w
2
1b � I40

(w2
1b

+ I20 )
3

+ 2G!I20w2b

2w3
1b � 6I20w1b

(w2
1b

+ I20 )
3

(30)

a22(t) =
@f2
@w2

(w1b; w2b)

= 2G!I20
I20 � w2

1b

(w2
1b

+ I20 )
2

� !: (31)

Note that the elementsa11; a12; a21 anda22 are time-dependent since
they are function of the dynamic bias trajectory(w1b; w2b).

4) The Dynamic Eigenvalues: To calculate the dynamic
eigenvalues, the Riccati equation must be solved. Substitution of
a11; a12; a21; anda22 in (17) yields

_l(t) = �l(t)2 � 2G!I20
I20 � w2

1b

(w2
1b

+ I20 )
2

� l(t)

+ 2G!2I20
�w4

1b + 6I20w
2
1b � I40

(w2
1b

+ I20 )
3

+ 2G!I20w2b

2w3
1b � 6I20w1b

(w2
1b

+ I20 )
3

: (32)

This is a time-varying quadratic differential equation in the unknown
l = l(t). Its solutions is found via transformation (19). Substitution of
(22) and (29)–(31) in (18) gives the following dynamic eigenvalues:

�1(t) =
q

u
� ! and

�2(t) = � q

u
+ 2G!I20

I20 � w2
1b

(I20 + w2
1b
)
2

� ! (33)

whereu andq are the solutions of the state-space system (21).
5) The Floquet Exponents:The Floquet exponents are given by

substituting (29)–(31) in (24)

�1 =
1

T
ln(u) jt +T

t
� ! and�2 = � 1

T
ln(u) jt +T

t

+
1

T

T

0

2G!I20
I20 � w2

1b

(w2
1b

+ I20 )
2

dt� !: (34)

Any oscillator is characterized by a constant oscillation amplitude
in steady state. As a consequence, one Floquet exponent should equal
zero and the other Floquet exponent should have a negative real part.
In the following paragraph this statement is checked by a numerical
example.

6) Numerical Example:Suppose an oscillating frequency of
1 MHz is specified. We chose the capacitors to beC = 5 nF. It
follows from (26) thatI0 = 817 �A. The oscillator output signal
(w1b) is plotted forG = 1:2 in Fig. 3. Notice that the estimation
of the amplitude according to (26) (Îosc = 365 �A) corresponds to
the simulated value. The dynamic eigenvalues follow from (33). The
real parts are plotted in Fig. 4. The imaginary parts of both dynamic
eigenvalues are equal to zero. Notice that both dynamic eigenvalues
contains periodic singularities. Using (34), the Floquet exponents can
be calculated directly from the solution of the transformed Riccati
differential equation. We obtain the following result:�1 = 0 and
�2 = �2:07 � 106.
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V. CONCLUSION

The dynamic behavior of a DTL oscillator has been investigated rig-
orously. To this aim the linear time-varying approximation is used. This
method enables a general description of the local dynamic behavior of
nonlinear circuits. It has been shown that, in order to find the dynamic
eigenvalues of second-order nonlinear circuits, a Riccati differential
equation must be solved. Since the solution of the Riccati equation
may contain singularities, numerical calculations could be difficult. A
variable transformation has been introduced to transform the Riccati
equation into a second-order linear time-varying differential equation,
which can be solved simultaneously with the calculation of the dynamic
bias trajectory. Its use has been shown when applied to the DTL oscil-
lator.
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Quadratic Stabilization of Uncertain Discrete-Time Fuzzy
Dynamic Systems

Gang Feng and Jian Ma

Abstract—New approaches to quadratic stabilization of uncertain dis-
crete-time fuzzy dynamic systems are developed in this paper. This un-
certain fuzzy dynamic model is used to represent a class of uncertain dis-
crete-time complex nonlinear systems which include both linguistic infor-
mation and system uncertainties. It is shown that the uncertain fuzzy dy-
namic system is stabilizable if a suitable Riccati equation or a set of Riccati
equations have solutions. Constructive algorithms are also developed to ob-
tain the stabilization feedback control laws. Finally, an example is given to
illustrate the application of the proposed method.

Index Terms—Discrete-time systems, fuzzy control, fuzzy uncertain sys-
tems, quadratic stabilization.

I. INTRODUCTION

Fuzzy logic control (FLC) has become more and more popular in
industries in recent years. FLC techniques represent a means of both
collecting human knowledge and expertise and dealing with uncertain-
ties in the process of control [1]–[5]. Fuzzy control usually decomposes
a complex system into several subsystems according to the human ex-
pert’s understanding of the system and uses a simple control law to
emulate the human control strategy in each local operating region. The
global control law is then constructed by combining all the local control
actions through fuzzy membership functions. Because of the complex-
ities of nonlinear systems, to find a set of local stabilization control
actions is much easier than to find a global stabilization control action
for the system.

Recently, there have appeared a number of stability-analysis results
in fuzzy control literature [6]–[8], where the Takagi–Sugeno fuzzy
models [9], [10] are used. The stability of the overall fuzzy system
is determined by checking a Lyapunov equation. It is required that
a common positive definite matrixP can be found to satisfy the
Lyapunov equation for all the local models. However, this is a difficult
problem to solve for all but low-ordersystems. Linear-matrix-in-
equalities (LMI) techniques have been used to avoid such a problem
[11]–[13].

During the last few years, we have proposed a number of new
methods for the systematic analysis and design of fuzzy logic con-
trollers based on the so-called fuzzy dynamic model or T–S model,
which consists of a family of local linear models smoothly connected
through fuzzy membership functions [14]–[21]. The basic idea of
these methods is to design a feedback controller for each local model
and to construct a global controller from the local controllers in such
a way that global stability of the closed-loop-fuzzy-control system is
guaranteed.

However, it can be observed that in the Takagi–Sugeno models or
the dynamic–fuzzy models, each local subsystem is deterministic in
the sense that there is no uncertainty considered in the local model.
The resulting global model is also deterministic in the same sense.
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