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ABSTRACT
In this paper, we study the performance of a transmitted
reference (TR) system corrupted by a single tone inter-
ferer in a multipath noise-free channel. By employing
“frequency wrapping”, a new architecture, the quadrature
downconversion autocorrelation receiver (QDAR) is de-
veloped. Unlike a RAKE receiver, the QDAR does not
suffer from timing and template matching problems, and it
also circumvents processing at high frequencies, thereby
reducing the on-chip circuit complexity and power con-
sumption, and offers an elegant solution to narrowband in-
terference rejection. The figure of merit of auto-correlation
receivers can be defined by the accuracy of the the time
delay element. In this paper, a cyclic delay is designed
as required for the autocorrelation function in the QDAR.
A Padé approximation is used to derive a rational trans-
fer function of a unit delay filter (i.e., 9th order). Finally
the performance of the cyclic delay is evaluated through
circuit level simulations.

1. INTRODUCTION

In 2002, the Federal Communications Commission (FCC)
unanimously agreed in allocating the unlicensed spectrum
from 3.1-10.6 GHz for UWB applications. Since then,
UWB technology has gained much interest and is viewed
as a potential candidate for future wireless short-range
data communication. The overwhelming attention that
UWB technology has received is primarily due to the promise
of a very high data-rate system at low cost and low power
consumption, and due to its capability of sharing the band-
width resources [1].
A particular form of UWB communication is impulse ra-
dio [2] (ir-UWB), where very short transient pulses (dura-
tion in the order of hundreds of picoseconds) are transmit-
ted rather than a modulated carrier. These pulses occupy
a bandwidth of a few gigahertz. The issue of co-existence
is a subject of controversy as UWB systems transmitting
at low spectral densities overlap with the bands of many
other narrowband systems.
Sub-optimal, low complexity transmitted reference (TR)
autocorrelation receivers (AcRs) proposed 40 years ago [3],

have regained popularity as the synchronization procedure
is considerably simplified, and the channel estimation chal-
lenge completely avoided. Despite the fact the narrow-
band interference has been acknowledged as a serious im-
pairment for UWB performance, only limited research has
been addressed to evaluate the effects on TR schemes [4,
5, 6].
In this paper, we first show that a single-tone interferer can
drastically deteriorate the performance of AcRs. Based
on our results, a new receiver architecture (i.e. QDAR),
which amalgamates auto-correlation and frequency down-
conversion, is proposed. Through frequency wrapping,
not only does it solve the issue of narrowband interference
(i.e., by precognitive allocation of the NB interferers in the
frequency domain) but also avoids high frequency on-chip
processing, thus reducing power consumption. The key
element in all AcRs is the delay and to save chip area and
power consumption, we propose cyclic delay line. This
approach allows one to implement a single delay-line with
only a small delay. Longer delays are by re-cycling the
signal. At first, a Padé approximation of a rational trans-
fer function is derived and then a cascade of two 9th order
filters is selected to implement this delay.

2. TRANSMITTED REFERENCE SIGNALING
SCHEME

2.1. The transmission scheme

In this section we briefly introduce the system model for
the transmitted reference scheme. The symbol energy is
split into Nd doublets, each one of them consisting of two
pulses p(t) of duration Tp delayed in time by Dj , j =
0 . . . Nd − 1. Each doublet is repeated every Td. The set
of elements Dj is here referred to as the delay hopping
code.
A mathematical representation of the UWB transmitted
signal x(t) is given by

x(t) =
∞∑

n=−∞
p(t−nTd)+anp(t−nTd−Dn mod Nd

).

The first pulse of each doublet is used as the signal tem-
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plate for demodulation of the data conveyed by the sec-
ond pulse. Indeed, the amplitude of the modulated pulse
is given as an = bbn/Nd

ccn mod Nd
, where bbn/Ndc is the

binary data which takes values of the set {1,−1} and is re-
peated for each of the Nd doublets, and cj , j = 0, . . . , Nd−
1 is the jth element of a chip code with alphabet {1,−1}
and periodicity equal to Nd. The received UWB signal
can be written as

y(t) =
∞∑

n=−∞
h(t− nTd) + anh(t− nTd −Dn mod Nd

),

(1)

where h(t) is the received pulse of duration Th and in-
cludes the transmit pulse p(t) with duration Tp, the prop-
agation channel c(t) of duration Tc, and the receive filter
q(t) with duration Tq . Hence, we have h(t) = p(t) ?
c(t) ? q(t) and Th = Tp + Tc + Tq . We assume here that
Td > Th+max Dj , such that interference among doublets
is avoided.
The received noise w(t) is modeled as white Gaussian
noise with spectral density N0, denoted as v(t), that is
filtered by the receive filter q(t), i.e., w(t) = v(t) ? q(t).
The overall received signal can thus be written as

r(t) = y(t) + w(t).

Performance will be measured as a function of Eb/N0,
where Eb is the bit energy before receiver filtering:

Eb = 2
∫

(p(t) ? c(t))2dt,

where the factor 2 is due to the fact that we use 2 pulses
to represent a single bit. Note that the measure Eb/N0

is independent of the receive filter and thus allows us to
compare the performance of different receive filters.
In the following sections, we limit ourselves to the first
symbol b0 = b, i.e., we assume that 0 ≤ t < NdTd. We
then describe some detectors to estimate this bit b.

2.2. The conventional autocorrelation principle

The conventional autocorrelation receiver consists of Nd

branches, each one provided with a delay-line matched
to one of the elements of the delay hopping code {Dj}
followed by an integrator. The output of the jth receiver
branch is described by

zj =
∫ jTd+Dj+TI

jTd+Dj

r(t)r(t−Dj)dt (2)

= aj

∫ TI

0

h2(t)dt + µj ,

where µj includes all possible self-interference and noise
terms. Thus, the unmodulated pulse, which forms some

Unit-delay

Attenuator

α

Input Output

Figure 1: Cyclic Delay

kind of a noise UWB channel estimate, is first time-aligned
and then correlated with the modulated pulse. All the out-
puts zj are then coherently combined to form the decision
variable

z =
Nd−1∑

j=0

cjzj = bNd

∫ TI

0

h2(t)dt + µ,

where

µ =
Nd−1∑

j=0

cjµj .

An estimate of b is then found by

b̂ = sign(z).

2.3. The cyclic autocorrelation principle

The conventional autocorrelation receiver requires Nd

branches, which could lead to a highly complex receiver.
Moreover, some of the delay-lines have to implement a
large delay. Such devices come with a large size and
power consumption, and they can not be implemented very
accurately. To avoid all these problems, we propose a
novel autocorrelation receiver equipped with a single delay-
line that only has to implement a small delay. Larger de-
lays are obtained by cycling the received signal through
the delay-line and an attenuator (see Figure 1). We call
this receiver the cyclic autocorrelation receiver. More specif-
ically, we correlate r(t) with the output of the cyclic delay-
line:

rcd(t) =
∞∑

i=1

αi−1r(t− id), (3)

where d is a small delay that can be implemented ac-
curately with a small size and power consumption, and
α < 1 is the attenuation. If Dj is a multiple of d, i.e.,
Dj = kjd, then it is clear that correlating r(t) with rcd(t)
will always include the product of ajh(t) with αkj−1h(t).
Hence, we can compute

zcd
j =

∫ jTd+Dj+TI

jTd+Dj

r(t)rcd(t)dt (4)

= ajα
kj−1

∫ TI

0

h2(t)dt + µcd
j ,
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where µcd
j again includes all possible self-interference and

noise terms. All the outputs zcd
j are then again coherently

combined to form the decision variable

zcd =
Nd−1∑

j=0

cjα
−kj+1zcd

j = bNd

∫ TI

0

h2(t)dt + µ,

where

µ =
Nd−1∑

j=0

cjα
−kj+1µcd

j .

An estimate of b is then again found by

b̂cd = sign(zcd).

In general, there are more self-interference and noise terms
than in the conventional autocorrelation receiver, which
will degrade the performance. But as we indicated be-
fore, this structure has many benefits w.r.t. size, power
consumption, and accuracy.
Still, we can advise some techniques to optimize the re-
ceived signal to interference plus noise ratio (SINR). A
first approach boils down to tuning α. It is clear that when
α is too small, there will be no useful signal left, whereas
when α is too large, the interference and noise will grow
too large. Hence, there must be some optimal value of α.
It is not easy to determine this analytically, due to the nu-
merous interference and noise terms that are present in µ.
We will later on show this optimal value of α by simula-
tions.
We can further reduce the received SINR by making use
of a switching device. More specifically, if we have some
rough idea of where the doublet starts, we can turn the
cyclic delay on when the doublet arrives and turn it off
after N cycles. In that case, we correlate r(t) with

rcd
N (t) =





∑n+1
i=1 αi−1r(t− id),

for nd < t ≤ (n + 1)d, n = 1, 2, . . . , N
r(t− d),
for t ≤ d and t > (N + 1)d

(5)
When (N + 1)d ≥ Dj + TI , the correlator output is in-
dependent of the number of cycles N , and can be repre-
sented by

z̃cd
j =

∫ jTd+Dj+TI

jTd+Dj

r(t)rcd
N (t)dt (6)

= ajα
kj−1

∫ TI

0

h2(t)dt + µ̃cd
j ,

where µ̃j is generally smaller than µj . The reason for this
is that the number of terms in (5) is limited whereas the
number of terms in (3) is unlimited. This clearly does
not change the useful signal energy, but decreases the ob-
tained interference and noise. It also means that we can

take a larger value for α, without risking that the interfer-
ence and noise grows unbounded. Actually, simulations
show that taking α = 1 is the best thing to do in this case.

2.4. Narrowband interference

We find it convenient and reasonable to model the nar-
rowband interferer (NBI) i(t) at UWB receiver as a single
tone sinusoidal signal. Hence,

i(t) =
√

2I cos(ωit + θi) ∗ hi(t), (7)

represents the received interferer signal, with transmitted
power equal to I , at the frequency fi = 2πωi, with phase
θi. The channel hi(t) consists of the interference prop-
agation channel ci(t) and the receive filter q(t), and can
generally be modeled as a frequency-flat fading channel:
hi(t) = ci(t) ? q(t) = βδ(t− t0), where β is the channel
gain and t0 the time shift. Note that the equivalent base-
band model is not used and the signal is real valued. We
shall merge the phase shift ωit0 in the phase θi, which can
be modeled as a r.v. uniformly distributed over the inter-
val [0, 2π). Then, by defining Iβ , β2I , we can rewrite
(7) as

i(t) =
√

2Iβ cos(ωit + θi). (8)

The overall received signal thus is

r(t) = y(t) + n(t) + i(t).

The term i(t) will play an important role in both the con-
ventional and cyclic autocorrelation receivers. Although
NBI can be reduced by digital techniques, it is advised
that the main part has already been canceled in the ana-
log domain. Section 4 will show how to do this, but first
we will look at the performance of the conventional and
cyclic autocorrelation receivers without NBI.

3. SIMULATION RESULTS

In this section, we illustrate the presented ideas with a few
simulation results. For simplicity, we consider a system
with a single chip, i.e, Nd = 1. Hence, we only em-
ploy a single delay: Dj = D (or kj = k). A delay
line that can be implemented with a reasonable accuracy
is d = 2 ns. Hence, we will always take a D that sat-
isfies D = kd = 2k ns. As a transmit pulse, we take
the first derivative of a Gaussian: p(t) = e−s2

s, where
s = 5(t − Tp/2)/Tp, such that the pulse has a support in
[0, Tp). We assume the multipath channel c(t) is Rayleigh
fading with E{c(t)c(t−τ)} = δ(τ)e−10t/Tc , such that the
channel has a support in [0, Tc). The noise is assumed to
be white Gaussian noise with power spectral density N0.
At the receiver, we filter the received signal with a filter
that is matched to the transmit pulse, i.e., q(t) = p(−t).
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For the simulations, we consider Tp = 1 ns, such that the
pulse p(t) has a bandwidth from about 500 MHz to 2 GHz
(3 dB points).

In a first experiment, we assume Tc = 0 ns, i.e., no multi-
path fading, and we compare the performance of the con-
ventional autocorrelation receiver with the cyclic autocor-
relation receiver without a switch. We take TI = 2 ns,
which is the length of the composite channel (this includes
the propagation channel, the transmit pulse, and the re-
ceive filter). We consider D = 6 ns (or k = 3) and
take different values for α. The results are presented in
Figure 2. The values of α we investigate are related to
the values of αk−1, which represents the total attenuation
of the useful signal part (see (4)). More specifically, we
look at αk−1 = 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Clearly,
αk−1 = 0.7 is close to optimal. For other values of D
(or k) a similar optimal value for α is obtained but the
performance decreases with an increasing value of D (or
k).
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Figure 2: Performance comparison between the conven-
tional autocorrelation receiver and the proposed one with-
out a switch; D = 6 ns.

Next, let us repeat the first experiment, but let us insert a
switch after the attenuation. The results are plotted in Fig-
ure 3. Clearly, the results have been improved compared
to the results without a switch. Moreover, this time α = 1
seems to be optimal, a result which holds for all values of
D (or k).

Finally, let us repeat the second experiment, but let us
adopt a multipath channel as defined above with Tc = 10
ns. The results are plotted in Figure 4. We see that the per-
formance is still reasonable, although the multipath chan-
nel introduces some unwanted interference. Longer mul-
tipath channels could of course introduce some larger per-
formance loss, but then more complicated equalization
methods can be used.
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Figure 3: Performance comparison between the conven-
tional autocorrelation receiver and the proposed one with
a switch; D = 6 ns.
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Figure 4: Performance comparison between the conven-
tional autocorrelation receiver and the proposed one with
a switch in case of a multipath channel; D = 6 ns.

4. SYSTEM ANALYSIS OF QUADRATURE
DOWNCONVERSION AUTOCORRELATION

RECEIVER

Downconversion is a technique employed in many con-
ventional narrowband systems, as a mean of processing
the information at lower frequencies and thus reducing
on-chip circuit complexity and power consumption. As
illustrated by Figure 5, the proposed architecture also ex-
ploits this aspect of frequency conversion. In this partic-
ular topology, the oscillator frequency is chosen such that
the frequency spectrum of the incoming data is “wrapped”
around dc, resulting in a reduced signal bandwidth with-
out affecting neither the bit error rate (BER) nor the over-
all system performance. Moreover, narrowband RF front-
ends suffer from limited image rejection. UWB systems
do not need to contend with this issue as the spectrum
of a UWB signal is spread over several gigahertz and the
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so-called “image” is a fraction of the useful UWB spec-
trum. By frequency wrapping, interferers below 3.1 GHz
are positioned at higher frequencies and thus can be easily
removed by low-pass filtering of the desired signal.

Lo_sin+

LNA

Zin → (50-100)Ω

BW → (3.1-10.6) GHz

S21 → (15-17) dB

NF < 2 dB

Lo_sin-

Lo_cos+ Lo_cos-

I

Id

Q

Qd

Inphase

±I

I

Qd

Q
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Quadrature

Downconversion

Antenna

±Q

Squaring 
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Figure 5: Quadrature Downconversion AcR
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Figure 6: Frequency Spectrum before (top) and after (bottom)
downconversion

The spectrum of the UWB signal before and after down-
conversion is illustrated in Figure 6.
As is seen in [4], phase and amplitude mismatch mini-
mally affect the performance of the AcR function as com-
pared to time delay variations, where the latter may influ-
ence the outcome of AcRs. Thus, the relative accuracy of
the time delay can be considered as the figure of merit for
AcRs.
In the next section, a cyclic delay line based on the princi-
ple of convolution is presented.

5. FILTER BASED CONTINUOUS-TIME DELAY

The QDAR resolves not only the issues such as, synchro-
nization and capturing multipath energy, but also exploits
the fact that detection with an autocorrelation function is

feasible as long as the relative polarity and not the shape
of consecutive pulses is preserved.
In regards to the transmitted reference systems and from
an implementation point of view, one is drawn to the con-
clusion that the bottleneck to this concept is the physical
realization of a time delay required to execute the auto-
correlation function. Thus, in this section we propose a
convolution based analog time delay, where the shape of
the data and that of the reference pulse is traded for their
relative positioning.
In this section, a procedure to derive a stable transfer func-
tion for a time delay element is discussed. One of the
most important aspects of analog filter synthesis is that the
approximating function must lead to a physically realiz-
able network which is dynamically stable. There are sev-
eral mathematical techniques that are frequently used to
achieve the best approximation possible. A method which
has proven to be successful is the Padé approximation of
the Laplace transformed impulse response of the filter.

5.1. Filter Design

Once the transfer function is derived, there are many state
space descriptions for a circuit that can implement it. This
allows the designer to find a circuit that fits his specific re-
quirements. In the context of low-power, low-voltage ana-
logue integrated circuits, the most important requirements
are the dynamic range, the sensitivity, and the sparsity,
all of which will be treated in the subsections that follow.
We will focus on a synthesis technique that is exclusively
based on integrators.

5.1.1. Padé Approximant

Just like the Taylor expression, the Padé approximant is an
approximation that concentrates around one point of the
function that needs to be approximated. In the Padé ap-
proximation, the coefficients of the approximating ratio-
nal expression are computed from the Taylor coefficients
of the original function. If we were to apply the Padé ap-
proximation to h(t) in the time domain, we would have
to transform this function to the Laplace domain, which
would possibly yield difficult expressions or even a non-
causal or unstable filter [7].
The reason to apply the Padé approximation to the Laplace
transform of h(t) is that it immediately yields a rational
expression which is suitable for implementation. Hence, a
Padé approximation of H(s) represents the transfer func-
tion of a possible filter. If the approximation rational func-
tion has a numerator of order m and a denominator of or-
der n, the original function can be approximated up to or-
der m + n.
Now we will derive the Padé approximation of a general
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function f(t). Suppose that we have the Taylor series ex-
pansion of F (s) around some point, e.g. s = 0, then

F (s) = c0 + c1s + . . . + cksk + O(sk+1) (9)

The constants c0 to ck are called the Taylor coefficients of
F (s). Unfortunately, F (s) is not a suitable expression to
build a filter, since it has only zeros. Therefore, to solve
this problem, we apply a Padé approximation of function
F (s) which is given by

F̂ (s) =
P (s)
Q(s)

=
p0 + p1s + . . . + pmsm

q0 + q1s + . . . + qnsn
(10)

where F̂ (s) is the truncated Taylor series given by (9) with
k = m + n. The coefficients of P (s) and Q(s) can be
computed as follows. The coefficients are found by set-
ting,

F̂ (s)− Pm

Qn
= 0 (11)

and equating coefficients. This procedure will yield a phys-
ically realizable transfer function.

5.1.2. Orthonormal State-Space

Among known standard state-space descriptions, such as
the canonical, the diagonal and the modal, the orthonor-
mal ladder form is notable since it is by definition semi-
optimized for dynamic range due to the specific structure
of the matrices. Furthermore, since it is derived from a
ladder structure, it is intrinsically less sensitive and the
matrices are highly sparse. A detailed explanation of the
procedure to derive the orthonormal ladder form can be
found in [7].
With a state-space approach, the filter can be optimized
for dynamic range, sensitivity, sparsity and coefficient val-
ues. A low sensitivity suppresses the effect of component
variations on the transfer function. It can be proved that a
filter that is optimized for dynamic range is also optimized
for sensitivity. The sparsity of the matrices directly deter-
mines the circuit complexity. State-space descriptions of
filters with more zero elements require less hardware and
are likely to consume lower power. Thus, it is therefore an
important design aspect of state-space filters. In respect to
a fully optimized and fully dense state-space description,
the resulting semi-optimal orthonormal filter structure dif-
fers only by about 2dB in dynamic range. The A and b
matrices of the defined transfer function are as follows,

A =

2
666664

0 α1 0
−α1 0 α2

−α2 0 .
. . .

. 0 αn−1

0 −αn−1 −αn

3
777775

b =

2
6666664

0
0
...
0q
an
π

3
7777775

(12)

where all αi’s are greater than zero. If not for the sin-
gle non-diagonal element, the tridiagonal A matrix would
also be skew-symmetric. The b vector consists of all zeros
except for the N th element [8]. The transconductance-
C or Gm-C technique can be used to precisely map the
coefficients of the orthonormal state-space description to
circuit level (see Figure 7).

-αn,n

αn-1,n

Cn

-αn,n-1

Cn-1

α1,2

-α2,1

± c1

± cn

C2C1

-α3,2

± b1Vin

Iout

Integrating Section: a

Input Section: b

Summing 

Section: c

C3

Coefficient of n
th
 row, n

th
-1 column: -αn,n-1

Figure 7: Gm-C state-space filter structure for a unit time delay

5.1.3. Transconductance Amplifier

Once the filter structure has been derived, a transconduc-
tance amplifier [9] implements every coefficient of the c
vector. The orthonormal structure has both positive as
well as negative coefficients, therefore a differential topol-
ogy. Another advantage of using this is the cancelation of
even order distortion terms that may arise from the actual
nullor implementation, thus improving linearity.

5.1.4. Scaling: capacitance and coefficient values

Transconductance amplifiers will form the basic building
blocks to implement the state-space description coefficients
of the analog delay. The integrators are implemented as
capacitors with a normalized value of 1 F. The correspond-
ing matrix A, and vectors b and c have extremely large co-
efficients corresponding to large gm values, which are not
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physically feasible at circuit level. By scaling the capaci-
tors and α1, one consequently scales matrix A and vector
b. Coefficients of vector c can too be down scaled by α2,
without affecting the response of the filter.

Â = ĈA, b̂ = α1b, ĉ = α2c (13)

5.1.5. Simulation Results

The group delay and the magnitude of the cyclic delay
(i.e., a cascade of two 9th order filters) are shown in Fig-
ure 8. It is clear from the plot that the group delay varies
approximately ±10% from the mean value (i.e., 1 ns),
whereas the magnitude remains relatively constant over
the band of interest. By processing the received signal at
lower frequencies, the QDAR’s topology significantly re-
laxes the accuracy of the delay element. Therefore, minor
fluctuations on the group delay will have little influence
on the overall auto-correlation function.
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Figure 8: Group Delay and Magnitude of the cyclic delay

6. CONCLUSIONS

We have shown that the auto-correlation of the narrow-
band interferer, arising from the dirty template adopted in
the signal demodulation, can be modeled. The quadra-
ture downconversion autocorrelation receiver (QDAR) is
thus be developed to counteract narrowband interferer(s)
by carefully allocating them out-of-band. Moreover, this
topology also circumvents processing at high frequencies,
thereby relaxing the accuracy of the time delay element.
Finally, we have also realized a cyclic delay derived from
a rational transfer function of a unit delay filter.
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