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Abstract - In this paper, the strong inversion MOS analogue of the log-domain principle, or dynamic 
translinear principle, is derived. The resulting class of ,/-domain circuits is based on the square law 
describing the large-signal behaviour of the MOS transistor in strong inversion. An inherent charac- 
teristic of ,/-domain filters is instantaneous companding, which is especially interesting for low-voltage 
applications. The design of a current-controlled two-integrator oscillator, based on the ,/-domain prin- 
ciple, is described. The oscillator was realised in a 1.6 p n-well CMOS process, for a supply voltage of 
3.3 V. Measurements show a total harmonic distortion of -42 dB and linear frequency tunability across 
1.3 decades. 

I Introduction 
The recent number of publications on log-domain [l], companding current-mode (21, exponential state- 
space [3] or dynamic transbear [4] filters, has increased the interest in circuits based on the large-signal 
characteristics of both the bipolar and the MOS transistor. With respect to MOS technology, the 
dynamic trwlinear principle can be applied only in the subthreshold region, where the MOST behaves 
exponentially. However, in this region, operation is limited to low frequencies only. In strong inversion, 
the large-signal behaviour is approximately described by the square law. Several basic principles to 
implement filters based on the square law can be distinguished. 

The fist  group consists of linear transconductances based on the square law. This idea was first 
introduced in [5]. A number of different elaborations of the basic idea can be distinguished within this 
group. Filters based on linear MOS transconductances are not companding; the capacitance voltage 
swings are linearly related to the input signals. 

The second group consists of circuits based on the MOS strong inversion analogue of the log- 
domain principle: the ,/-domain principle [6]. Just like circuits based on the log-domain principle, ,/- 
domain circuits are inherently instantaneous companding. This property makes them very interesting 
for low-voltage applications. In current-mode companding circuits, the relative voltage swings across 
the capacitors are smaller than the input current swings, thus cancelling the linear relation between 
the maximuminput current of the circuit and the supply voltage. 

A current-mode approach is best suited to describe instantaneous companding filters based on the 
large-signal behaviour of the bipolar and the MOS transistor. In Sec. II, both the log-domain principle 
and its square law analogue, the ,/-domain principle, are explained from a current-mode point of view. 

In Sec. III, a companding current-controlled oscillator is designed, based on the ,/-domain principle. 
The oscillator was realised in a full-custom 1.6 p n-well CMOS process. Measurement results are 
presented in Sec. IV. 

11 Companding 
Figure 1 shows two generic subcircuits of log-domain and ,/-domain circuits, respectively. The log- 
domain and ,/-domain principle can be explained quite elegantly with the help of these circuits. 

Exponential law 

Translinear circuits are based on the exponential law describing the bipolar transistor or the MOS 
transistor in weak inversion, given by: 
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where aU symbols have their usual meaning. 

capacitance current shown in Fig.. l a  can be derived from the time derivative of eqn (1). This yields: 
The key to dynamic translinear circuits, or log-domain circuits, are the capacitance currents. The 

where C is the capacitance value and the dot represents the time derivative. 
This equation shows a nonlinear relation between the collector current IC and the capacitance 

current Imp. The linear derivative term CUT& can be isolated by multiplying eqn (2) by the (strictly 
positive) denominator IC. The dynamic translinear principle thus states that the time derivative of a 
current is equivalent to a p d u c t  of cumnts. This product of currents can be implemented by means 
of the translinear principle [7]. Because of the key role of the translinear principle, we prefer the term 
'd 'c translinear'. 

sqprare law 

In analogy with the dynamic translinear principle, the J-domain principle is based on the largesignal 
behaviour of the MOS transistor operating in strong inversion, given by: 

where all symbols have their usual meaning. 
Again, the key issue is the current I,, flowing through the capacitance C shown in Fig. lb. The 

largesignal equation describing I,,, can be obtained from the time derivative of eqn (3). In tenras of 
the drain current ID, I,,, is given by: 

A better insight into the ,/-domain principle is obtained by slightly rewriting this equation, multi- 
plying it by &. This yields: 

The d-domain principle thus reads: The derivative of a current i s  equivalent to the product of 
the square root of that current and a capacitance current. Consequently, a differential equation can 
be implemented by substituting a product of a current and the square root of a current for each of 
the derivatives in that differential equation. An algebraic equation without any derivatives is obtained. 
Implementing this algebraic equation thus becomes equivalent to implementing the Werentid equation. 

In dynamic translinear circuits, the translinear principle is used to implement the required products 
of cunents. In case of the ,/-domain principle, the voltagetranslinear principle [8] (a term coined in [7]) 
can be applied to implement the algebraic equation on the right-hand side of eqn ( 5 ) .  The voltage 
translinear principle reads that a loop of gatesource voltages, as shown in Fig. 2, can be described in 
terms of currents by: 

I11 Design of a CCO 
The log-domain principle and the ,/-domain principle can be used to implement Merentid equations. 
To demonstrate the design procedure using the ,/-domain principle, in this section, a current-controlled 
two-integrator oscillator is synthesised. The oscillator is designed for a supply voltage of 3.3 V. 
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J-Domdn integrator 

The most important block to be designed is the integrator. Any integrator can be described by the 
dimensionless differential equation: i = x, where the dot represents differentiation with respect to  di- 
mensionless time 7, and z and z represent the dimensionless input and output signal, respectively. This 
dimensionless differential equation has to be transformed into an equation with the proper dimensions 
for the ,/-domain principle to be applicable. First, information is carried by currents. Therefore, 2 and 
z are transformed into the currents I;,, and lout, respectively. 

Second, the dimensionless time 7 has to be transformed to the time t with dimension [b]. In this 
transformation, the term C/m has to be introduced,. since this term is on the left-hand side of 
eqn (5) while the right-hand side of eqn (5) is to be implemented. A possible time transformation 
is: t = C G T / ( ~ I ~ ~ ) ,  where Iol and Io2 are DC bias currents. After these transformations, the 
differential equation describing the integrator reads: 

From this equation, the derivative iout can be eliminated by applying the ,/-domain principle. The 
derivative I .  is thus replaced by an algebraic expression in the variables I d  and Iwp. Equation ( 5 )  
and Fig. l b  can be used to this end, by substitution of I .  for ID.  Substituting eqn ( 5 )  in (7), an 
algebraic equation is obtained: 

In strong inversion MOS, this algebraic equation can be implemented using the voltagetranslinear 
principle. Unfortunately, no general synthesis method exists [8]. The only possible solution is to divide 
eqn (8) into several simpler functions for which voltagetranslinear circuits are known. 

A square-root circuit can be used to implement the term Jm [8]. A modified version of the 
circuit published in [8] is shown in Fig. 3. Due to the up-down topology used for the translinear loop, 
this circuit is less sensitive to body effect. 

Using a square-root circuit, the square root term in eqn (8) is substituted for by the output current 
I, of the square-root circuit. The resulting equation can be implemented by the four-quadrant multi- 
plier/divider shown in Fig. 4 [8]. Both the input and the output of this multiplier are differential. The 
output of the multiplier is the capacitance current of eqn (8): Imp = Io&, / I z .  The multiplier is loaded 
by a PMOS current mirror to obtain a single-ended output current, which is supplied to the capacitor of 
the integrator. In the output subcircuit, a PMOS transistor was used, instead of the NMOS transistor 
shown in Fig. lb, for reasons of voltage compatibility with the output of the PMOS current mirror. 

The overall block schematic of the ,/-domain integrator is shown in Fig. 5. 

Two-integrator oscillator 

A two-integrator oscillator can be realised by applying negative feedback to a cascade of two integra- 
tors. Figure 6 shows the block schematic of the realised current-controlled companding oscillator. An 
amplitude control mechanism has to be added to the loop of two integrators and one inverter, in order 
to obtain a unique limit cycle. By applying negative local feedback around each of the integrators, the 
oscillation can be damped. Similarly, positive feedback undamps the oscillation. Using multipliers as 
feedback elements facilitates the application of both positive and negative feedback to the integrators. 
The input signals of the multiplier are the output signal of the integrator and a control signal, which 
determines the amount of feedback. This control signal is the dif€erence between the measured ampli- 
tude and a reference amplitude. The amplitude of the oscillation can be measured using Pythagoras’ 
law [9], which can be implemented by two voltagetranslinear square circuits [8]. The amplitude of the 
oscillator can be tuned by means of the reference amplitude current. 

The oscillation frequency is equal to the unity gain frequency of the designed J-domain integrator, 
which can be found from eqn (7). This shows that the oscillation frequency can be tuned linearly by 
means of 102.  



IT! Measurement results 

The oscillator was realised in a 1.6 pn n-well CMOS process. A.ll DC bias currents and the two 
capacitors of the oscillator were connected externally. The occupied chip area is 0.65 m2. The largest 
part of the chip area is consumed by the NMOS current mirrors of the square root circuit and the 
multiplier shown in Figs 3 and 4, which were biased in the moderate inversion region, by m e w  of a 
large aspect ratio, in order to gain some voltage room. 

The output currents of the oscillator were measured across two resistors of 100 kn, using two 
external CB current buffers. The DC current used to bias the integrators in class A was 5 PA. The 
amplitude of the oscillation was 3.6 PA, which is 72% of the bias current. The capacitors had a value of 
82 pF and the control currents lol and Ioz were 5 /.LA and 3.1 PA, respectively. The measured frequency 
of 22 kHz compares reasonably well with the calculated frequency of 28 kHz. 

The measured frequency spectnun is depicted in Fig. 7. The harmonic distortion was mainly caused 
by the second and third harmonic at -46 dB and -45 dB, respectively. The total harmonic distortion 

The oscillation frequency was linearly tunable by means of the control current 102 across 1.3 decades 
of current, from about 2.6 EKz to 53 kHz, as is shown in Fig. 8. Linear tuning is prohibited for large 
values of Ioz by the limited supply voltage. 

thus mounts to -42 dB. 

V Conclusions 

Based on the square law, approximately describing the MOS transistor in the strong inversion region, 
the J-domain principle is derived, which is the analogue of the log-domain principle, or dynamic 
translinear principle. 

The J-domain principle can be used to substitute algebraic expressions for the derivatives in a 
differential equation. By eliminating the derivatives, an algebraic current-mode equation results. This 
algebraic equation cm be implemented by m e w  of the voltagetranslinear principle. 

The ,/-domain principle was used to design a companding current-controlled oscillator, which was 
realised in a 1.6 pm n-well CMOS process. The measured distortion of the oscillator was -42 dB. The 
oscillation frequency was tunable across 1.3 decades. 
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Figure 1: Principle of a) log-domain and 
b) ,/-domain circuits. 

Figure 2: A voltagotranslinear loop. 
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Figure 4: Four-quadrant multiplier/divider. Figure 3: Square root circuit. 
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Figure 6: Two-integrator oscillator. 
Figure 5: &Domain integrator. 
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Figure 8: Frequency control of the oscillator. 

Figure 7: Frequency spectrum of the oscillator. 


