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Abstract—A promising new approach to shorten the de-
sign trajectory of analog integrated circuits without giv-
ing up functionality is formed by the class of dynamic
translinear circuits. This paper presents a structured de-
sign method for this young, yet rapidly developing, cir-
cuit paradigm. As a design example, the design of a low-
voltage translinear second-order quadrature oscillator is
presented. The circuit is a direct implementation of a
nonlinear second-order state-space description, comprises
only two capacitors and a handful of bipolar transistors
and can be instantaneously controlled over a very wide fre-
quency range by only one control current.

I. INTRODUCTION

Electronics design can be considered to be the map-
ping of a set of mathematical functions onto silicon. For
discrete-time signal-processing systems, of which the digi-
tal signal processors (DSPs) today are by far the most pop-
ular, this comes down to the implementation of a num-
ber of difference equations, whereas for continuous-time
signal-processing systems, often denoted by the term ana-
log, differential equations are the starting points. In mixed
analog-digital systems, the analog parts, however, often oc-
cupy less than ten percent of the complete, i.e., the mixed
analog-digital circuitry, whereas their design trajectory is
often substantially longer and therefore more expensive
than of their digital counterparts. Where does this dis-
crepancy arise from? This can be partially explained by
the fact that, at circuit level, for analog circuits far more
components play an important role; various types of tran-
sistors, diodes, resistors and capacitors, to mention a few;
sometimes also inductors, resonators, and others. Whereas
for digital circuits, the complete functionality is covered by
transistors only1.

From the above, it automatically follows that, if we re-
strict ourselves to the use of as few different types of com-
ponents as possible, without giving up functionality, we
can shorten the analog design trajectory considerably, in
the same way as this is done for digital circuits. One suc-
cessful approach, as we will see in this paper, is given by
the class of circuits called dynamic translinear circuits.

Dynamic translinear (DTL) circuits, of which recently
an all-encompassing current-mode analysis and synthesis
theory has been developed in Delft [1], are based on the
DTL principle, which can be regarded as a generalization
of the well-known ‘static’ translinear principle, formulated
by Gilbert in 1975 [2]. The DTL principle can be applied
to the structured design of both linear differential equa-
tions, i.e. £lters, and non-linear differential equations, e.g.,
RMS-DC converters, oscillators, phaselock loops (PLLs)
and even chaos. In fact, the DTL principle facilitates a

1It must be noted that, for higher frequencies or bit rates, also the in-
terconnects come into play. However, their in¤uence is considered to be
equally important for analog as well as digital systems.

direct mapping of any function, described by polynomial
differential equations, onto silicon.

Application areas where DTL circuits can be suc-
cessfully used include audio signal processing, radio-
frequency transceivers, infra-red and £ber-optic front-ends
and biomedical applications.

This paper aims to present a structured design method
for DTL circuits. The static and dynamic TL principles
are reviewed in Section 2. Section 3 presents the design
method, applied to the design of a DTL quadrature oscilla-
tor, starting from a nonlinear second-order state-space de-
scription that describes the oscillator behavior in the time
domain. After four hierarchical design steps, being di-
mension transformation, the introduction of capacitance
currents, TL decomposition and circuit implementation, a
complete circuit diagram results. Simulation results of the
thus obtained DTL quadrature oscillator, are presented in
Section 4.

II. DESIGN PRINCIPLES

TL circuits can be divided into two major groups: static
and dynamic TL circuits. The £rst group can be applied to
realize a wide variety of linear and non-linear static trans-
fer functions. All kinds of frequency-dependent functions
can be implemented by circuits of the second group. The
underlying principles of static and dynamic TL circuits are
reviewed in this section.

A. Static translinear principle

TL circuits are based on the exponential relation between
voltage and current, characteristic for the bipolar transistor
and the MOS transistor in the weak inversion region. In
the following discussion, bipolar transistors are assumed.
The collector current IC of a bipolar transistor in the active
region is given by:

IC = ISeVBE/VT , (1)

where all symbols have their usual meaning.
The TL principle applies to loops of semiconductor junc-

tions. A TL loop is characterized by an even number of
junctions [2]. The number of devices with a clockwise ori-
entation equals the number of counter-clockwise oriented
devices. An example of a four-transistor TL loop is shown
in Fig. 1. It is assumed that the transistors are somehow
biased at the collector currents I1 through I4. When all de-
vices are equivalent and operate at the same temperature,
this yields the familiar representation of TL loops in terms
of products of currents:

I1I3 = I2I4. (2)

This generic TL equation is the basis for a wide variety of
static electronic functions, which are theoretically temper-
ature and process independent.
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Fig. 1. A four-transistor translinear loop.

B. Dynamic translinear principle

The static TL principle is limited to frequency-
independent transfer functions. By admitting capacitors in
the TL loops, the TL principle can be generalized to in-
clude frequency-dependent transfer functions. The term
‘Dynamic Translinear’ was coined in [3] to describe the
resulting class of circuits. In contrast to other names pro-
posed in literature, such as ‘log-domain’ [4], ‘companding
current-mode’ [5], ‘exponential state-space’ [6], this term
emphasizes the TL nature of these circuits, which is a dis-
tinct advantage with respect to structured analysis and syn-
thesis.

The DTL principle can be explained with reference to
the sub-circuit shown in Fig. 2. Using a current-mode ap-
proach, this circuit is described in terms of the collector
current IC and the current Icap ¤owing through the capac-
itance C. Note that the dc voltage source Vconst does not
affect Icap. An expression for Icap can be derived from the
time derivative of (1) [3, 5]:

Icap = CVT
İC

IC
, (3)

where the dot represents differentiation with respect to
time.
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Fig. 2. Principle of dynamic translinear circuits.

Equation (3) shows that Icap is a non-linear function of
IC and its time derivative İC . More insight in (3) is ob-
tained by slightly rewriting it:

CVT İC = IcapIC . (4)

This equation directly states the DTL principle: A time
derivative of a current can be mapped onto a product
of currents. At this point, the conventional TL principle
comes into play, since the product of currents on the right-
hand side (RHS) of (4) can be realized very elegantly by
means of this principle. Thus, the implementation of (part
of) a differential equation (DE) becomes equivalent to the
implementation of a product of currents.

The DTL principle can be used to implement a wide va-
riety of DEs, describing signal processing functions. For
example, £lters are described by linear DEs. Examples of
non-linear DEs are harmonic and chaotic oscillators, PLLs
and RMS-DC converters.

III. STRUCTURED DESIGN OF A TRANSLINEAR

SECOND-ORDER QUADRATURE OSCILLATOR

Synthesis of a dynamic circuit, be it linear or non-linear,
starts with a polynomial DE or with a set of polynomial
DEs describing its function. Often, it is more convenient
to use a state-space description, which is mathematically
equivalent. The structured synthesis method for DTL cir-
cuits is illustrated here by the design of a particular second-
order quadrature oscillator, described in the time domain
by:

dx1(τ)
dτ

= g[x1(τ)] + x2(τ), (5)

dx2(τ)
dτ

= g[x2(τ)] − x1(τ), (6)

where τ is the dimensionless time of the oscillator and g is
a (nonlinear) odd-symmetry function of the two quadrature
oscillator signals x1 and x2.

A. Transformations

In the pure mathematical domain, equations are dimen-
sionless. However, as soon as we enter the electronics do-
main to £nd an implementation of the equation, we are
bound to quantities having dimensions. In the case of TL
circuits, all time-varying signals in the DEs and the tunable
parameters, have to be transformed into currents. Hence,
the signals x1 and x2 can be transformed into the cur-
rents I1 and I2 through the equations: x1 = I1/IO and
x2 = I2/IO, IO being a bias current that determines the
absolute current swings.

The dimensionless time τ can be transformed into the
time t with dimension [s] through the equation [1]:

d

dτ
=

CVT

IO

d

dt
. (7)

From (7), two important characteristics of DTL oscilla-
tors can be derived. First, time (t) is inversely proportional
to current IO. This means that the oscillator will be lin-
early frequency tunable by means of only one control cur-
rent. Second, this control current must be proportional to
the absolute temperature to eliminate the in¤uence of the
temperature on the oscillator.

Applying the above transformations, the resulting
current-mode multi-variable polynomial DEs become:

CVT İ1 = I2
Oh(I1, IO) + IOI2, (8)

CVT İ2 = I2
Oh(I2, IO) − IOI1, (9)

where h(Ii, IO) equals g(Ii/IO).
Since the currents in this state-space description will

equal the currents in the £nal oscillator circuit, at this
point it is already possible to determine the most impor-
tant oscillator characteristics, which are its oscillation fre-
quency ωosc and its amplitude Îosc = Î1 = Î2. If we as-
sume that the oscillator currents are sinusoidal, thus I1 =
Îosc sin(ωosct+ θosc) and I2 = Îosc cos(ωosct+ θosc), ωosc

and Îosc follow from:

ωosc =
IO

VT C
, (10)

∫ T/2

0

h(Ii, IO)dt = 0, (11)

where T equals 2π/ωosc.



B. De£nition of the capacitance current

Conventional TL circuits are described by multivariable
polynomials, in which all variables are currents. The gap
between these current-mode polynomials and the DEs can
be bridged by the introduction of capacitance currents,
since the DTL principle states that a derivative can be re-
placed by a product of currents.

De£ning Icap1 and Icap2 as Icap1 = CVT
İ1

I1+IO
and

Icap2 = CVT
İ2

I2+IO
, the above state-space description

transforms into:

(I1 + IO)Icap1 = I2
Oh(I1, IO) + IOI2, (12)

(I2 + IO)Icap2 = I2
Oh(I2, IO) − IOI1. (13)

From this point on, the synthesis theory for static TL cir-
cuits can be used [7], since both sides of the above DEs are
now described by current-mode multivariable polynomials.

C. Translinear decomposition

The above set of polynomials is the basis of the next syn-
thesis step, which is TL decomposition. That is, the poly-
nomials have to be mapped onto a set of TL loop equa-
tions that are each characterized by the general equation:∏
CW

JC,i =
∏

CCW

JC,i, JC,i being the transistor collector

current densities in clockwise (CW) or counter-clockwise
(CCW) direction.

One possible solution is achieved by ‘parametric’ de-
composition of (12) and (13). Two intermediate currents,
Iy1 and Iy2 are introduced, resulting in:

IO(IO + Iy1) = (I1 + IO)(Icap1 + IO), (14)

IO(IO + Iy2) = (I2 + IO)(Icap2 + IO), (15)

Iy1 = I2 + IOk(I1, IO), (16)

Iy2 = −I1 + IOk(I2, IO), (17)

with k(Ii, IO) = Ii

IO
+ h(Ii, IO).

From its de£nition, it follows that k(Ii, IO) must be a
nonlinear time-invariant odd-symmetry function of Ii and
IO, whose derivative k′(Ii, IO) with respect to Ii is larger
than one for small values of |Ii| and smaller than one for
large values of |Ii|. Possible polynomial functions are the
ones characterized by: (1 + x)m(1− y)n = (1− x)m(1 +
y)n, m,n ∈ N , m > n, which solves to

y = k(x) =

(
1+x
1−x

)m/n

− 1
(

1+x
1−x

)m/n

+ 1
. (18)

These functions are easily implemented in TL circuits [8],
the simplest one implementing (18) for m = 2 and n = 1
by a third-order TL loop. See Fig. 3.

Using

k(Ii, IO) = G

(
IO+Ii

IO−Ii

)2

− 1
(

IO+Ii

IO−Ii

)2

+ 1
= 2G

IOIi

I2
O + I2

i

, (19)

G > 1
2 being a constant, we arrive at the following £nal TL
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Fig. 3. Implementation of the TL function k(Ii, IO).

decomposition:

IO(IO + Iy1) = (I1 + IO)(Icap1 + IO),
(20)

IO(IO + Iy2) = (I2 + IO)(Icap2 + IO),
(21)

(IO + I1)2(IG + I2 − Iy1) = (IO − I1)2(IG − I2 + Iy1),
(22)

(IO + I2)2(IG + I1 + Iy2) = (IO − I2)2(IG − I1 − Iy2),
(23)

with IG = GIO.
Assuming the oscillator output currents to be sinusoidal,

the oscillator amplitude Îosc follows from (11), (16) and
(19), which yields

Îosc ≈ IO

√
6

2

√
2G − 1. (24)

Note that Îosc is indeed proportional to IO as has been dis-
cussed previously.

D. Circuit implementation

The last synthesis step is the circuit implementation. The
TL decomposition that was found during the previous syn-
thesis step has to be mapped onto a TL circuit topology
and the correct collector currents have to be forced through
the transistors. Biasing methods for bipolar all-NPN TL
topologies are presented in [7].

A possible biasing arrangement for the TL quadrature
oscillator, assuming ideal current sources, is depicted in
Fig. 4. Transistors Q13–Q16, Q1–Q4, Q16–Q21 and Q4–
Q9 implement (20)–(23), respectively. Current sources
GIO and 2GIO are current controlled. Q24 and Q10 de-
liver the oscillator output currents I1 and I2.

Replacing all the ideal sources by practical ones yields
the £nal circuit diagram, which, for the sake of brevity, is
not discussed here.

IV. SIMULATION RESULTS

The £nal circuit was simulated using SPICE and realistic
(IC) capacitor and (minimum-size) transistor models of our
in-house 1-µ, 15-GHz, bipolar IC process. Typical transis-
tor parameters are: hfe,NPN ≈ 100, fT,NPN ≈ 15 GHz,
hfe,LPNP ≈ 55 and fT,LPNP ≈ 80 MHz. The results in-
dicate the correct operation of the TL quadrature oscillator
for various temperatures and values of IO, G (> 1

2 ) and
C1 (= C2), yielding oscillations from 50 mHz (C1 = C2 =
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Fig. 4. Possible biasing arrangement for the 1-volt TL quadrature oscillator. Ideal current sources are assumed.

1 nF, IO = 10 pA) up to 13 MHz (C1 = C2 = 0.1 pF, IO

= 10 µA), in accordance with (10) and (24). The supply
voltage can be as low as 0.95 V. The current consumption
approximately equals 25 + 4G times IO. For G = 0.6, the
total harmonic distortion is below 2 %. For IO = 1 µA, C =
100 pF and G = 0.7, the quadrature phase error equals 0.31
degrees.

Fig. 5 depicts the oscillation frequency fosc (in Hz) as a
function of control current IO for £ve different integratable
capacitor values: 0.1 pF, 1 pF, 10 pF, 100 pF and 1 nF.
G equals 0.7. From this plot, it can be deduced that this
particular TL quadrature oscillator can be controlled over a
very wide frequency range of 6 (!) decades.

Fig. 5. Simulated oscillation frequency as a function of control current
IO for £ve different capacitor values.

Since k is a time-invariant function of IO and Ii, i ∈
[1, 2], the output current waveform is independent of the
oscillation frequency. This has been veri£ed by means of
a Fourier analysis and proved to be true for the complete
‘linear’ current range, i.e., between 10 pA and 2 µA. Fig. 6
depicts the output frequency spectrum of the oscillator run-
ning at 50 kHz. The total harmonic distortion is mainly
determined by the second and third harmonic and equals
1.4 % or -37 dB. A smaller G will lower the distortion even
further.

V. CONCLUSIONS

In this paper, it was shown that dynamic translinear
circuits constitute an exciting new approach to the struc-
tured design of analog signal processing functions, us-
ing transistors and capacitors only. The presented design

Fig. 6. Simulated output spectrum for fosc = 50 kHz.

methodology was elaborated into the design of a translin-
ear second-order quadrature oscillator starting from a non-
linear second-order state-space description. The resulting
circuit comprises only two capacitors and handful of tran-
sistors and can be instantaneously controlled over a very
wide frequency range by only one control current (IO). Its
harmonic distortion is directly related to another parameter
(G) and can be made small by the design.

Simulations indicate that the proposed circuit operates
from a single supply voltage down to 1 V, oscillates over
8.4 decades of frequency with less than 2 % total harmonic
distortion. The quadrature phase error equals 0.31 degrees.
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