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ABSTRACT

Dynamic translinear (DTL) circuits use the exponential input-
output relation of the transistor as a primitive for the synthesis of
electronic circuits. As a consequence the analysis of the dynamic
behaviour of this type of circuits in the presence of parasitics re-
sults in analyzing dynamic nonlinear circuits.

There are three different approaches that can be applied: the lin-
ear time-invariant (LTI) approach, the quasi-static (QS) approach
and the linear time-varying (LTV) approach. The LTI approach is
limited to circuits in which the bias points are fixed. The QS ap-
proach can be applied to circuits with time-varying bias points, but
these time-variations must be relatively slow. The LTV approach
has none of these restrictions and opens the way to a general and
structured design method for dynamic nonlinear circuits.

We apply the linear time-varying approach to a first-order dy-
namic translinear filter. Its dynamic eigenvalue is calculated and
stability is determined by means of the corresponding Floquet ex-
ponent. We also apply the quasi-static approach to the same DTL
filter. Comparisons between the linear time-varying approach and
the quasi-static approach show the limitations of the quasi-static
approach and the usefulness of the linear time-varying approach in
the design of DTL circuits.

1. INTRODUCTION

In modern electronic circuits the classic linear design methodolo-
gies are limiting the possibilities for large dynamic range, low
power consumption, low voltage operation and large bandwidth.
The obvious way to go beyond these limitations is the use of a non-
linear design approach, using nonlinear primitives. The dynamic
translinear (DTL) approach is such a design methodology [1, 2, 3].
In DTL circuits the exponential input-output relation of the bipo-
lar transistor (or the MOS transistor in weak inversion) is used as
a primitive for synthesis. Since DTL circuits operate in the cur-
rent domain, they are relatively insensitive to collector-substrate
and wiring capacitors. So a relatively good HF behaviour can be
expected. However much about the precise HF behaviour is still
unknown.

DTL synthesis and analysis are based on the nonlinear input-
output relation of the transistor. Therefore the system behaviour in
the presence of parasitics is often defined by nonlinear differential
equations, even if the ideal overall transfer function is linear. These
equations do not give much insight. In order to handle these non-
linear dynamic effects in a structured design trajectory we need a
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systematic methodology to model the dynamic behaviour of non-
linear circuits. There are three different approaches that can be
applied: the linear time-invariant (LTI) approach, the quasi-static
(QS) approach and the linear time-varying (LTV) approach.

In the LTI approach the nonlinear relationships are approxi-
mated by a first-order Taylor expansion around a fixed bias point.
This results in a LTI small-signal model, which enables the use of
Laplace transforms and a description of the internal dynamics in
terms of the poles and zeros of the transfer function. If the varia-
tion of the signals is small compared to the bias point the resulting
description is accurate.

TheQS approachis a straightforward extension of the LTI ap-
proach in which the bias point is assumed to be signal-dependent.
However it is assumed that the variations of the bias point are slow
compared to the dynamics of the system (slowly varying signals).
As a consequence the dynamics of the system can be studied in
every point of the signal-dependent bias trajectory independently
(“frozen time approach”). This results in a description in terms of
time-varying quasi-static poles and zeros. This model is only valid
for slowly varying signals [7].

TheLTV approachis a general and accurate method to describe
the dynamic behaviour of nonlinear circuits. Again the nonlin-
ear relationships are approximated by a first-order Taylor expan-
sion around a signal-dependent bias trajectory, but now the time-
dependency of the bias point is not frozen when studying the dy-
namic behaviour. The resulting LTV small-signal model is a con-
sistent generalization of the LTI small-signal model, in which the
eigenvalue and pole concept are generalized by means of the dy-
namic eigenvalue and Floquet exponent [4, 5, 6].

In this paper we apply the linear time-varying approach to a
first-order DTL filter. In Section 2 we give a short overview of the
linear time-varying approach. The linear time-invariant approach,
quasi-static approach and linear time-varying approach are applied
to a first-order DTL filter in Section 3 and some comparisons are
made. Finally some conclusions are given in Section 4.

2. THE LINEAR TIME-VARYING APPROACH

The linear time-varying approach models the behaviour of a non-
linear circuit in the vicinity of a time-varying bias trajectory. When
determining the time-varying bias trajectory no distinction is made
between bias and signal components, which implies that also class-
B circuits and oscillators can be treated. In this section we give a
short overview of the LTV approach for nonlinear circuits with
first-order dynamics, since this is all the theory needed for the ex-
ample worked out in this paper. A more general description of the
LTV approach can be found in [4, 5, 6].
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We begin with a state-space description of the circuit:

dx(t)

dt
= f [x(t); u(t)]: (1)

Herex(t) represents the state variable andu(t) the external source.
The state-space description (1) can be used to calculate the time-

varying bias trajectoryxb(t) of the state variable as function of the
external sourceub(t). This signal-dependent bias trajectoryxb is
called thedynamic bias trajectory.

The dynamic behaviour of the circuit in the vicinity of the dy-
namic bias trajectory can be modeled by studying small variations
x�(t) around the dynamic bias trajectoryxb(t). The noise be-
haviour can be modeled by studying small variationsu�(t) on the
deterministic external signalub(t). In studying the dynamic be-
haviour it suffices to deal withu�(t) = 0. By linearizing the
state-space description (1) aroundxb(t) andub(t) we obtain the
following homogeneous variational equationfor x�(t)

dx�(t)

dt
= ax[xb(t); ub(t)] � x�(t) , ax(t) � x�(t): (2)

in which ax(t) is the Jacobian off with respect to the state-
variablex.

The dynamic behaviour of the nonlinear circuit for a given input
is determined by the dynamic eigenvalue�(t) of the homogeneous
variational equation. The solutionx�(t) is of the form:

x�(t) = s � e

(t) = s � e

R
t
0
�(�)d� (3)

where the one-dimensional eigenvectors can be chosen to equal
unity. Thedynamic eigenvalue�(t) is simply given by:

�(t) = ax(t) (4)

If the deterministic input signalub(t) of the nonlinear circuit is
chosen to be periodic thenax(t) is periodic too. In this case we can
apply the Floquet theory of periodic LTV systems to the variational
equation. If we apply the definition of the Floquet exponent� with
trajectory of operationxb(t), ub(t) of [8] then

� =
1

T

Z t

0

�(�)d�: (5)

The system is stable if the real part of the Floquet exponents� is
negative.

ForLTI small-signal circuits the eigenvalues are constant and
the Floquet exponents work out to the eigenvalues, which forLTI
systems are equivalent to the system poles. Thus the Floquet ex-
ponents are a generalization of the traditional pole concept, as far
as stability is concerned.

3. ANALYSIS OF A FIRST-ORDER DTL FILTER

In this section we introduce a linear first-order DTL filter. The
circuit topology is extended in order to eliminate the influence of
most of the parasitic capacitors. Only one dominant parasitic ca-
pacitor remains. We apply the LTI, QS and LTV approach to that
circuit.

3.1. Circuit description

A possible implementation of a linear first-order filter using the
dynamic translinear principle is depicted in Figure 1. More de-
tails on the synthesis of this circuit can be found in [2]. It has the
following cut-off frequency!c:

!c =
I0

C � VT
(6)
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Figure 1: Implementation of a linear first-order DTL filter
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Figure 2: Modified linear first-order DTL filter

which is tunable by the bias currentI0.
The circuit behaviour for high frequencies is influenced by

parasitic capacitors (collector-substrate, base-emitter and base-
collector capacitors). Measures are taken to make their influence
negligible. The resulting circuit is shown in Figure 2. Only the
influence ofCpar (the base-emitter capacitance of transistor Q2)
can not be counteracted by proper circuit design. Therefore its
influence on the circuit HF behaviour is further analyzed.

3.2. The linear time-invariant and quasi-static approach

We first analyze the DTL filter in Figure 2 by using a linear time-
invariant small-signal model. Then we apply the quasi-static ap-
proach, by assuming that the bias point and therefore the parame-
ters of the small-signal model are signal dependent.

3.2.1. The LTI approach

In the LTI approach we assume the signals to be small compared to
the DC bias currents. The circuit is linearized in its DC bias point
by replacing the transistors with simplified hybrid-� models. Af-
ter applying the nullor conditions we obtain the LTI small-signal
model of Figure 3. In this figureIin andIout are the input and
output current (which are assumed to be small),ic1 and ic2 are
the small-signal collector currents of transistors Q1 and Q2,gm1,
gm2 andgm4 are the transconductance of transistors Q1, Q2 and
Q4,C is the external capacitor andCpar is the base-emitter capac-
itance of transistorQ2.

The input-output relation in the Laplace domain is given by:

Iout(s)

Iin(s)
=

gm4

gm1
�

1 + s
Cpar

gm2

1 + s
C+Cpar

gm2

(7)
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Figure 3: LTI small-signal model of the modified DTL filter

The pole of the system equals:

p = �
gm2

C + Cpar

= �
I0

VT (C + Cpar)
, �

I0
�+ �

(8)

where� = VT C and� = VT Cpar. Note that the cut-off fre-
quency is reduced due to the parasitic capacitor (compare with (6))
and that a zero appears atz = �I0=�. The LTI approach gives us
a first feeling for the circuit behaviour, but can not be applied for
large input signals.

3.2.2. The QS approach

We drop the assumption that the signals should be small compared
with the bias currents, but suppose the signals to be slowly varying.
Then we can apply the QS approach by substituting the bias point
of the LTI small-signal model by a signal dependent bias trajectory.
We obtain

Iout(s)

Iin(s)
=

gm4[Iout(t) + I0]

gm1[Iin(t) + I0]
�

1 + s
Cpar

gm2[Ic2(t)]

1 + s
C+Cpar

gm2[Ic2(t)]

(9)

Since the parameterCpar is a junction capacitor it is virtually cur-
rent independent. The time-varying quasi-static pole of the system
equals:

p(t) = �
Ic2(t)

�+ �
(10)

Note that this pole varies with time if the large-signal current
Ic2(t) varies with time. This is the case even if� = 0, which
corresponds to a parasitic capacitorCpar equal to zero.

3.3. The linear time-varying approach

If the slowly varying condition is dropped then the QS approach is
not applicable. In that case only the LTV approach is a consistent
generalization of the LTI small-signal model. We will now apply
the LTV approach to the first-order DTL filter under consideration.

3.3.1. The state-space description

We use the Ebers-Moll large-signal model of the bipolar transistor
to find the nonlinear differential equation describing the circuit be-
haviour. By applying Kirchhoffs current law at node 3 of Figure 2
and using the translinear loop equation we obtain:

�Ic2 � �
_Ic2
Ic2

+ �
_Iout

Iout + I0
+ 2I0 � I0 = 0 (11)

Ic2 � (Iout + I0) = (Iin + I0) � I0 (12)

By substituting (12) into (11) and choosingIout as the state-
variable we arrive at the following state-space description:

_x = f(x; u) x = Iout u = Iin (13)

f(x; u) =
1

�+ �

��
� _u

u+ I0
� I0

�
� x+ u I0 +

� _u I0
u+ I0

�

which is a linear time-varying differential equation.

3.3.2. The dynamic bias trajectory

In order to find the dynamic bias trajectory we need to specify the
input signal. We choose the following sinusoidal input signal:

ub = I0 � sin(!st) (14)

whereI0 is the bias current,� is the modulation depth (� 2 [0; 1])
and!s is the radial frequency.

The dynamic bias trajectoryxb(t) equals the solution of the
state-space description (13) for the chosen input signalub =
I0� sin(!st). This is a first-order linear time-varying differential
equation and in this special case we can find the following analyt-
ical expression for the dynamic bias trajectory:

xb(t) = [1 + � sin(!st)]
�

�+� e
�

I0
�+�

t
I0 � (15)

�

(
I0 +

I0
�+ �

Z t

0

�
I0� sin(!s�) +

�!s� cos(!s� )

1 + � sin(!s� )

�
�

� [1 + � sin(!s�)]
�

�
�+� e

I0
�+�

�
d�

)

where we have chosen the initial conditionxb(0) = I0 since for
an input current equal to zero att = 0 the output current equals
Iout(0) = xb(0) = I0.

3.3.3. The linear time-varying small-signal model

The homogeneous variational equation is obtained by inserting
(13) and (14) in (1) and (2). This yields:

_x� = ax(t) � x� =
1

�+ �

�
�

!s� cos(!st)

1 + � sin(!st)
� I0

�
� x� (16)

Using (4) the dynamic eigenvalue�(t) is given by:

�(t) =
1

�+ �

�
�

!s � cos(!st)

1 + � sin(!st)
� I0

�
(17)

To show the significance of the dynamic eigenvalue we con-
sider two special cases. If� ! 0, that is, if the parasitic ca-
pacitanceCpar becomes negligible, then the dynamic eigenvalue
approaches the constant polep = �I0=(C VT ) of the ideal overall
transfer function (compare with (6)). This occurs even if the time-
variations of the input-signal are on the same order of magnitude
as the ideal time-constant of the system.

If !s !1 then the amplitude of the dynamic eigenvalue goes
to infinity. Physically this is explained by a signal bypass, caused
by the parasitic capacitorCpar. This corresponds to a constant
transfer. Note that in the LTI small-signal model of the circuit this
behaviour occurs in the frequency range above the pole and zero.

3.3.4. The Floquet exponent

The Floquet exponent is obtained by substituting (17) into (5):

� =
1

T

Z T

0

�(� )d� = �
I0

�+ �
(18)

Thus for any sinusoidal input source the dynamic bias trajectory
is stable, since for any input frequency or amplitude� is negative.
Note that the Floquet exponent equals the pole of the LTI small-
signal model (see (8)).
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Figure 4: Dynamic eigenvalue�(t) (dotted) and quasi-static pole
p(t) as function of time t (fs = 80MHz,Cpar =0.01pF)
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Figure 5: Dynamic eigenvalue�(t) (dotted) and quasi-static pole
p(t) as function of time t (fs = 80MHz,Cpar = 5pF)

3.4. Comparison between the quasi-static and linear time-
varying approach

The example worked out shows that the dynamic eigenvalue con-
verges to the ideal linear pole if the parasitic capacitor vanishes.
This convergence takes place independently of the time-variations
of the input signal in comparison to the internal dynamics of the
system. Thus the dynamic eigenvalue reflects the fact that the over-
all transfer becomes linear, which is a desirable property when
designing the dynamic behaviour. The quasi-static pole does not
have this property and is only a good model if we deal with slowly-
varying signals.

We illustrate the difference between the two approaches through
some numerical examples of the linear first-order DTL-filter. Sup-
pose that an ideal cut-off frequency of 100MHz is specified. We
choose the external capacitor to beC = 5pF, which implies that
I0 = 81.7�A (see (6)).

First we apply a sinusoid to the input with a frequency offs =
80MHz. We choose a modulation depth� of 0.97, which ensures
that the circuit operates in its nonlinear region. Thus the input
amplitude equals 79.25�A. The dynamic eigenvalue and the quasi-
static pole are plotted for a parasitic capacitorCpar of 0.01pF in
Figure 4 and of 5pF in Figure 5. Figure 4 shows that for a very
small parasitic capacitor the dynamic eigenvalue is almost time-
invariant and converges to the ideal linear pole. The quasi-static
pole does not converge. Figure 5 shows that forCpar = 5pF the
dynamic eigenvalue even becomes positive. The Floquet exponent
however is negative, thus the system is stable.

Then in Figure 6 the frequency of the input signal is chosen to be
fs = 800kHz, the input amplitude remains 79.25�A andCpar =

5pF. Then we deal with a slowly-varying system and we see that
the quasi-static pole is equal to the dynamic eigenvalue.

4. CONCLUSIONS AND FUTURE WORK

Dynamic translinear circuits use the exponential input-output re-
lation of the transistor a primitive for the synthesis of electronic
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-3.3·108
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-3.1·108

-3·108

p(t)

λ(t)
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Figure 6: Dynamic eigenvalue�(t) (dotted) and quasi-static pole
p(t) as function of time t (fs = 800kHz,Cpar = 5pF)

circuits. As a consequence the analysis and synthesis of DTL cir-
cuits in the presence of parasitics necessitates the modeling of the
dynamic behaviour of nonlinear circuits.

Through the example of a first-order linear DTL filter it has
been shown that the linear time-varying approach is a general and
suitable method. In this model the eigenvalue and pole concept
of linear time-invariant small-signal circuits are generalized using
dynamic eigenvalues and Floquet exponents. The dynamic eigen-
value of the DTL filter was shown to converge to the designed ideal
linear pole if the parasitics vanish, which is a desirable property.
The time-varying pole of the quasi-static approach does not have
this property. If the DTL filter is operating under slowly-varying
conditions the quasi-static pole was shown to be equal to the dy-
namic eigenvalue.

A next step is the investigation of the linear time-varying ap-
proach for higher-order DTL circuits and DTL circuits with a de-
signed nonlinear transfer. This topic is presently under research.
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