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Abstract—Atrial electrogram (AEG) acquired with a high
spatio-temporal resolution is a promising approach for early
detection of atrial fibrillation. Due to the high data rate, trans-
mission of AEG signals requires considerable energy, making its
adoption a challenge for low-power wireless devices. In this paper,
we investigate the feasibility of using compressed sensing (CS) for
the acquisition of AEGs while reducing redundant data without
losing information. We apply two CS approaches, standard CS
and rakeness-based CS (rak-CS) on real medical recordings.
We find that the AEGs are compressible in time, and, more
interestingly, in the spatial domain. The performance of rak-
CS is better than standard CS, especially at higher compression
ratios (CR), both during sinus rhythm (SR) and atrial fibrillation
(AF). More specifically, the difference in the achieved average
reconstruction signal-to-noise (ARSNR) in rak-CS and standard
CS, for CR = 4.26, in the time domain is 7.7 dB and 2.6 dB
for AF and SR, respectively. Multi-channel data is modeled as a
multiple-measurement-vector problem and a suitable mixed norm
is used to exploit the group structure of the signals in the spatial
domain to obtain improved reconstruction performance over l1
norm minimization. Using the mixed-norm recovery approach,
for CR = 4.26, the difference in achieved ARSNR performance
between rak-CS and standard CS is 5 dB and 2 dB for AF and
SR, respectively.

I. INTRODUCTION

Atrial electrograms (AEG) are a class of signals that are
recorded on the surface of the heart. In addition to electro-
cardiogram (ECG), which is recorded on the surface of the
human body, AEG has the potential to offer deeper insights
into the signal propagation in the heart, specifically in the
atria, located in its upper part. Worth stressing that AEGs
can be used to study the progression of cardiac abnormal
conditions such as atrial fibrillation (AF). Irregular R-R in-
tervals [1] and the absence of P-waves characterize AF in
an ECG recording. Although characterization of AF in AEGs
is not straightforward, it is usually identified with irregular
and rapidly varying signals, and appear highly chaotic. The
phenomena governing the propagation of the wavefront during
AF is poorly understood and the current understanding is
limited due to the lack of efficient high-resolution mapping
systems [2], [3].

In comparison to recording ECG signals, AEGs are acquired
with a high resolution multi-electrode two-dimensional array,
which requires continuous acquisition, storage, as well as
transmission of a large amount of data. Due to the data-
intensive nature of the acquisition of AEGs, developing
portable devices for continuous monitoring in the clinical

Fig. 1: System-level diagram of the acquisition of atrial electrograms.

setting is challenging. In particular, for the early diagnosis
of AF and understanding of the complex spatio-temporal
behavior of the signals recorded on the surface of the heart,
both during sinus rhythm (SR) and atrial fibrillation (AF),
there is a need for a high-resolution data acquisition system.
Yet, the acquisition and transmission of high-resolution data
poses a constraint on the power consumption.

A system-level diagram of the acquisition of the AEGs
is shown in Figure 1, where the signals are recorded using
an integrated array and a recording module, and transmitted
to a base station for further processing. With a minimum
interelectrode distance of 2 mm, at least 1728 recording sites
are required to cover the entire atrium which includes the right
atrium, the left atrium and the Bachmann’s bundle [4]. For
recording signals from 1728 electrodes, at a resolution of 16
bits and a sampling frequency of 10 kHz, the total data rate
required is 16× 10× 103 × 1728, or 276 Mbit/s, resulting in
≈ 16.6 Gbit/min. To acquire and process such a large amount
of data for a portable device is a practical challenge due to
the needed power and memory requirements.

One of the innovative points of our work is to investigate
the compressibility of a new class of signals, i.e., AEGs, both
in time and spatial domain. Compressed sensing (CS) is a
relatively recent paradigm that allows simultaneous acquisition
and compression of a signal by means of sampling it below
the Nyquist rate. In the state-of-the-art literature, CS has
been successfully applied to various bio-signals, such as ECG,
EMG, and EEG [5]–[8], thanks to the property of these signals
to be inherently sparse in a certain domain. In details, we will
investigate the sparsity properties of the AEG signal and com-
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Fig. 2: Time-domain waveform: (a) Normal sinus rhythm (b) Atrial
fibrillation (Data courtesy: Erasmus MC, Rotterdam).

pute the expected CS performance with varying compression
ratios. We will focus both on single-channel compression in
the temporal domain and on multi-channel compression by
exploiting the expected similarity among the signals coming
from adjacent leads. In Section II, the compressed sensing
approach for a single channel and multi-channel AEG signals
is explained. In Section III, the performance evaluation of the
proposed approach is described. Finally, the conclusions are
summarized in Section IV.

II. COMPRESSED SENSING

A. Single channel compressed sensing
Compressed sensing is a method for efficiently sampling

signals that are known to be sparse in some basis [9], [10]
without loss of information. Exploiting CS significant energy
saving can be obtained in acquisition [7] [6], with the further
advantage to ensure a certain degree of data privacy [11] [12].

More rigorously, let x be an N -dimensional input vector
representing the signal recorded from a single electrode, which
is K-sparse in a suitable basis Ψ = [ψ1, ψ2..., ψN ], ψi ∈ RN ,
that is x can be represented as

x = Ψα (1)

where α is an N -dimensional vector with only K � N
non-zero elements in the matrix Ψ. K and N are related by
sparsity which is given by (1−K/N)× 100%.

Such a sparse vector can acquired by a simple linear
combination via a sensing matrix Φ = [φ1, φ2..., φM ]t, φi ∈
RM , where ·t denotes transposition, so that the (compressed)
measurement vector y can be written as

y = Φx+ n (2)

where y ∈ RM , Φ ∈ RM×N , x ∈ RNand n ∈ RM is the
measurement noise, modeled as additive white Gaussian in
the temporal domain.

From the compressed measurement samples, the signal can
be reconstructed by solving the minimization problem given
by

α̂ = arg min
α
‖α‖1 subject to y = ΦΨα (3)

where ‖α‖1 is the l1 norm of the signal. Further, the recon-
structed input signal is given by x̂ = Ψα̂.

The only prerequisite of the standard CS is the sparsity of
a signal in an arbitrary basis. However, given a proper class
of signals, it is possible to exploit other priors to improve
the performance of the CS reconstruction. We focus here
on the rakeness-based approach [13], that exploits the input
signal energy distribution (i.e, the localization). This technique
matches the input signal second-order statistics in the design
of the measurement matrix. The idea is to increase the average
energy of the measurement vector elements (and so, intuitively,
the contained information) by a soft adaptation of the statistics
of the rows φj of Φ to the correlation matrix characterizing
the class of acquired signals. Mathematically, the rakeness ρ
between two processes generating the vectors φj and x can
be defined as [13], [14]

ρ(φj , x) = Eφj ,x

[
|〈φj , x〉|2

]
(4)

where Eφj ,x refers to the expectation with respect both to φj
and x. By selecting a class of matrices Φ that, given x, max-
imizes ρ there is an observed reduction in the reconstruction
error ‖x− x̂‖2 after the solution of (3).

B. Multi-channel compressed sensing

Consider a 2-D array of L electrodes where the signal X is
acquired from various channels with a sensing matrix Φ and
the measurement matrix Y can be described as

Y = ΦX + n (5)

where Y ∈ RM×L, Φ ∈ RM×N , X ∈ RN×L and n ∈ RM×L
is the measurement noise, modeled as spatio-temporally white
Gaussian noise. Here, X = [x1, x2, . . . , xL], where xj is
the signal acquired from the j-th single electrode. Let also
A = [α1, α2, . . . , αL] the matrix composed by the sparse
representation vectors of [x1, x2, . . . , xL], with xj = Ψαj ,
j = 1, 2, . . . L or, with a more compact notation, X = ΨA.

The multi-channel atrial electrograms share similarities
among the adjacent channels, which can be exploited for
an improved reconstruction performance. Multi-channel CS
acquisition can be formulated as a multiple-measurement-
vector (MMV) problem and can be solved with jointly sparse
recovery algorithms [15]. The aim of MMV compressed sens-
ing is to recover the jointly sparse A, which can be formulated
as [16]

Â = arg min
A
‖A‖1,2 subject to Y = ΦΨA (6)

where the joint sparsity in A is induced by the l1,2 mixed norm

defined by ‖A‖1,2=
(∑L

j=1

(∑N
i=1 |Ai,j |

)2)1/2

.

III. RESULTS

A. Method of data acquisition

Atrial electrograms as shown in Figure 2, are recorded on
the epicardium, the surface of the heart, using a custom-made
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Fig. 3: Time-domain ARSNR vs CR for the atrial electrograms
during: (a) SR (b) AF.

46 mm by 14 mm flexible multi-electrode array with 192 gold-
plated electrodes and a 256-channel data-acquisition system
[4]. The data is acquired using an analog front-end module
that consists of an amplifier with a gain of 60 dB, a bandpass
filter with the bandwidth extending from 0.5 to 400 Hz and an
analog-to-digital converter with a resolution of 16 bits, which
samples the analog signal at 1 kHz. A total of 10 electrode
array sections are required to cover the entire surface area of
the atria. For rak-CS, one of the recorded sections is used
as a reference for the correlation matrix estimation. Using
the SPGL1 toolbox, we use the CS decoders to reconstruct
the signals by solving (3) and (6), where Ψ is the Symmlet6
transformation basis.

B. Performance evaluation

The reconstructed signal is compared to the original signal
using the performance metric, reconstruction signal-to-noise
ratio (RSNR) given by

RSNRdB = 20log
(
‖x‖2
‖x− x̂‖2

)
(7)

The RSNR is averaged over all the channels and 9 blocks of
the signal for standard and rak-CS in the time domain. Firstly,
it can observed that rak-CS performs better than standard CS.
The difference in the achieved average reconstruction SNR
(ARSNR) performance between the two approaches increases
with increase in the compression ratio. In case of SR, at CR

1http://www.cs.ubc.ca/∼mpf/spgl1/
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Fig. 4: Spatial-domain ARSNR using mixed-norm recovery and l1
norm minimization (for N=512) in case of: (a) SR (b) AF.
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Fig. 5: ARSNR for 192 channels in case of: (a) SR (b) AF.
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Fig. 6: Reconstruction of the time-domain waveform of atrial elec-
trograms at CR = 4.26 (N=512): during (a) SR (b) AF.

= 4.26, rak-CS outperforms standard CS by almost 9 dB, as
shown in Figure 3(a). In case of atrial fibrillation, at CR =
4.26, rak-CS outperforms standard CS by 7.7 dB, as shown
in Figure 3(b). rak-CS accounts for the localization of the
signal energy due to which there is a significant improvement
in performance at higher CRs (See Section II).

The reconstruction performance of the SPGL1 recovery
method which minimizes only the l1 norm is compared with
the mixed norm recovery approach and is as shown in Figures
4(a) and 4(b). It can be seen that the reconstruction perfor-
mance of the jointly sparse recovery approach is better than
independent l1 minimization recovery and the difference is
more pronounced at higher compression ratios. Also, standard
CS is compared with rak-CS using the multiple-measurement-
vector approach. At CR = 4.26, the ARSNR of the rak-CS
approach using the mixed norm recovery is 24.4 dB, which is
4.6 dB better than standard CS with the l1 norm minimization
recovery method, in case of SR.

The ARSNR varies over different channels and compression
ratios showing significant differences in the case of SR and
AF as shown in Figures 5(a) and 5(b). The fixed dark blue
lines on the figures correspond to reference signals. One can
observe that the group structure is preserved in case of SR,
but the signals are not very similar in case of AF. This points
to the fact that during atrial fibrillation, the signals are not
coherent and the signal propagation takes place depending on
the conduction paths and blocks in the atria.

Figures 6(a) and 6(b) show the reconstruction of the atrial
electrograms in the time domain during SR and AF, re-
spectively, for an arbitrarily selected channel number (ch =
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Fig. 7: Reconstruction of the spatial-domain waveform of atrial
electrograms at CR=4.26 (N=512): (a) SR (b) AF.

90). Figures 7(a) and 7(b) show the reconstruction of the
AEGs in the spatial domain, during SR and AF, respectively
for an arbitrarily chosen time instant. We can see that the
reconstruction of the signal during sinus rhythm is better than
during atrial fibrillation for the same compression ratio. i.e,
CR = 4.26.

IV. CONCLUSIONS

The main findings of the work can be summarized as :
• For the application of AEGs, rak-CS performs better than

standard CS at all CRs in both the time domain and the
spatial domain.

• At lower CRs, mixed-norm recovery works better in the
case of SR since the signals are coherent.

• In the time-domain and the spatial-domain, AF has worse
absolute performance compared to SR because of inco-
herence among signals recorded in different channels and
much larger energies involved.

• For the detection of AF, rak-CS is a better choice, as the
performance is significantly better than standard CS at
higher CRs.

One distinguishing feature of AEGs from other biosignals such
as EEG or EMG is the direction of the signal propagation.
As the composite cardiac signal propagates in a specific
direction, the absence of strong spatial correlations can detect
the presence of AF. Finally, the rakeness-based compressed
sensing approach holds the potential to reconstruct AF signals
with high ARSNR which makes it a strong candidate for the
acquisition of AEGs for the detection of AF, especially when
aiming for hardware- and power-efficient implementation.
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