Stochastic Resonance Mixed-Signal Processing:
Analog-to-Digital Conversion and Signal Processing
Employing Noise

Insani Abdi Bangsa**%1, Dieuwert P. N. Mul*%, and Wouter A. Serdijn*
iabdi.bangsa@ft.unsika.ac.id, dpnmul @ gmail.com, and w.a.serdijn@tudelft.nl
*Bioelectronics Section, Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, the Netherlands
Faculty of Engineering, State University of Singaperbangsa Karawang, Indonesia

Abstract—Stochastic resonance (SR) is a phenomenon in which
noise can be employed to increase the performance of a system.
It can e.g. be used to improve the performance of comparator-
based circuits. This paper presents the analytical derivation of
input-output relation, harmonic distortion, and noise behaviour
of a 1-bit ADC using SR. Furthermore, the design of a new
signal multiplier based on SR-ADC:s is presented. The predicted
behaviours are demonstrated by means of simulations. The
work presented in this paper shows the potential for analog to
digital conversion and integrated signal processing fully based
on stochastic resonance.

Index Terms—stochastic resonance, analog-to-digital converter,
multiplier, 1-bit processing.

I. INTRODUCTION

Noise has been mostly considered as something undesirable
in the world of signal processing. When mixed with a signal, it
is thought to obstruct the extraction of information contained
in the signal. However, the occurrence of a phenomenon called
stochastic resonance shows that the presence of noise can
improve the performance of a system.

Stochastic resonance (SR) is a phenomenon in which the
performance of a nonlinear system is better than it is without
noise [1]. By adding noise to, e.g., a comparator-based circuit,
a system based on SR can be built [2], [3]. The addition of
noise will increase the frequency of changes of the output
states, which, when averaged, will lead to an input-output
relation that is more linear than that of a noiseless system.
An SR system has a performance peak for a specific noise
level.

This paper focuses on using SR to design a 1-bit analog-to-
digital converter (ADC) and to integrate mathematical opera-
tions with the ADC. First, the SR-ADC (Fig. 1) is introduced
in Section II and analytic derivations of the behaviour of the
proposed system are presented in Section III. This derivation
allows designers to predict the performance of the SR-ADC,
and thereby enables them to determine the optimal values of
the design parameters. Furthermore, 1-bit stochastic resonance

81. A. Bangsa and D. P. N. Mul contributed equally to this work.

I. A. Bangsa is funded by The Indonesia Endowment Fund for Education
(LPDP RI).

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

[s

&L

Fig. 1. Stochastic resonance system.

signal processing operators are discussed and the design of a
SR-multiplier is presented in Section IV. Finally, the conclu-
sions are presented in Section V.

II. STOCHASTIC RESONANCE SYSTEM

A stochastic resonance system has a non-zero optimal
noise value. To achieve this property, the system needs to be
nonlinear, and should have two (or more) stable states [4]. In
sub-threshold SR, the signal without noise cannot reach the
threshold to switch from one state to another [1]. In this case,
the noise is necessary to reconstruct any information from the
signal. A second class of SR systems is supra-threshold SR.
The signal without noise can reach the threshold to switch
from one stable state to another. However, adding noise can
cause the system to switch from one state to another more
often, which increases the performance [5], [6]. For higher
noise levels, the system behaves (close to) linearly.

Fig. 1 shows the proposed system, where x, 1, y,, and § are
the input signal, input noise, 1-bit output, and averaged output,
respectively. The output of the quantiser is a pulse density
modulated (PDM) signal. By averaging the PDM signal using
a low-pass filter, the output is transferred back to the amplitude
domain. The quantiser amplifies the signal, since it can be
driven by a weak noisy input signal. Besides performing the
amplification, the signal is directly transformed to the binary
domain, and can thus be defined as a stochastic resonance
analog-to-digital converter (SR-ADC). The mechanism em-
ployed in this system shows large similarities to dithering [3],

[7].



ITI. ANALYTICAL DERIVATION

The behaviour of stochastic resonance systems can be found
in literature [3], [7]. However, although a similar idea has
been mentioned in [8], to the knowledge of the authors, an
analytical derivation targeting a designers guide for a SR-ADC
is not reported on yet. This section presents a method to predict
the performance of the considered SR-ADC. To validate the
method, an example is given using white Gaussian noise and
a sine wave input. However, the method can be used for any
input signal, and any type of white noise.

A. Input-Output Relation

The output of the quantiser is a stochastic signal. By averag-
ing this signal, the average of multiple samples is calculated.
As a result of the averaging, the expected transfer is defined
by the probability of each of the two states, either Q4 or @) _.
The expected output ¢ is described by (1), where z is the input
signal value, 0 is the noise value. The quantiser outputs are
normalized to @+ =1 and Q_ = —1.

§(x,n) = Ely| z]
P((x+mn)>0|z) — P((x+n) <0|z)
Pin>—z|z)—Pn< —z|x)
1-2-P(n< —z|x)

)

The probability P(n < —x | x), and thus the expected transfer,
can be calculated using the cumulative distribution function of
the noise. The noise is assumed to be white Gaussian noise,
which gives:

r 2
P(n<xx)—/m/g~exp<w>dn

2)
1 N 1 ¢ < -z >
= — —er —_— .
22 V20
Thus the expected output for a given input value x is
x
y(x,o0) =erf | — | . 3
o) =t () G

The expected transfer of the system for different noise levels
is shown in Fig. 2. The expected output is compared with
simulations of the system. Averaging is performed over 10, 000
samples.

B. Gain and Harmonic Distortion

The performance of the SR-ADC is a trade-off between
noise and harmonic distortion. Thus, an accurate quantisation
of the harmonic distortion is crucial in the performance
analysis. The total harmonic distortion (THD) is derived in
the time domain. The expected output §(x,o,t) is split into
a linear component H(z,0) - z(t) and harmonic distortion
HD(t), which leads to

g(z,0,t) = ﬁ(az,o) ~x(t) + HD(t). 4
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Fig. 2. Expected transfer for different noise levels. The simulation results are
marked with "x’.

The linear gain H (z, 0) is derived by performing a least square
error fit. The gain H(x, o) is scaled such that it produces the
least mean squared error, and thus the power of the harmonic
distortion is minimized. Since the fitted signal only affects the
fundamental frequency, minimizing the error power ensures
that the error only contains harmonics.

C. Noise

The noise power at the output of the quantiser can be
calculated directly from the expected output (§(z, o, t)). Since
the output of the quantiser is either 1 or —1, the power at the
output of the quantiser is 1. The noise power is thus at

Pfr]’Q - 1 - Pfg(m’o—)

T
B 1 [ 9 ®)
—I—T/y(x,o) dt,

0

where x(t) is the input signal and 7 is the signal period.
Since every sample of white noise is independent of each

other, the noise at the output of the quantiser is also indepen-

dent, and thus white. The noise at the output of the system

is averaged by a filter, which leads to an output noise power

formulated as:

P _ fenBw
n,out — T 1 p

§f s

where frpnpw is the equivalent noise bandwidth of the filter
and f; is the sampling frequency.

P.q; (6)

D. Signal-to-Noise-and-Distortion Ratio

The performance of the system can be defined using
the signal-to-noise-and-distortion ratio (SNDR). This measure
gives the ratio between the output signal power and the
combined harmonic distortion and noise power. The SNDR
is defined by

P, out,signal
5 b @)

SNDR = .
PHD + Pn,out
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Fig. 3. RMS output error of the SR-ADC for a sine-wave input with a

frequency of 1 Hz and fs = [2, 5, 10, 20, 50, 100] kHz. The output is filtered
by a first-order Butterworth LPF with a cut-off frequency of 10 Hz. The RMS
input noise o is set to 1, while the input signal amplitude A is shifted from
0.1 to 10.

The output signal and harmonic distortion power are given by

Pout,signal = H(.’E, U)2Bn,signal 3
and
T
1 . 2
Pu = 7 / (ifw.0.t) ~ H(.0)-2()) i, ©)
0
respectively.

The results of the proposed method are verified for the case
of a sine-wave input. In this example, the signal frequency
is set to 1 Hz, the cut-off frequency is 10 Hz and the filter
is a first-order Butterworth LPF. The input noise is white
Gaussian noise with ¢ = 1, while the input signal amplitude
(A) is shifted from 0.1 to 10. Fig. 3 shows the output error
for fs = [0.2,0.5,1,2,5,10] kHz. Alongside the analytical
results, simulation results of the system are shown to validate
the method. The final SNDR results for the same sample ratios
are shown in Fig. 4. The figure clearly shows the performance
peak. A higher sampling ratio gives a higher SNDR. For low
noise levels, the distortion limits the behaviour, while for high
noise values, the noise becomes the dominant source of error.
It should be noted that these results only hold for a single
sine-wave input. The waveform of the signal affects the noise
as well as the harmonic distortion behaviour.

IV. SR-BASED MATHEMATICAL OPERATIONS

Not only limited to analog-to-digital conversion and ampli-
fication, SR can also be used to do mathematical operations on
signals. There are four fundamental mathematical operations:
addition, subtraction, multiplication, and division. An SR-
adder can be built by implementing a half-adder after the
SR-ADCs. Consequently, a subtractor can be implemented by
using a half-adder while inverting one of the SR-ADC outputs.
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Fig. 4. Signal-to-noise-and-distortion ratio of the SR-ADC for a sine-wave
input with a frequency of 1 Hz and fs = [2,5,10,20,50,100] kHz. The
output is filtered by a first-order Butterworth LPF with a cut-off frequency of
10 Hz. The RMS input noise o is set to 1, while the input signal amplitude
A is shifted from 1 to 10.
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Fig. 5. Proposed SR-multiplier using an XNOR gate in combination with
two SR-ADCs.

While a division might be difficult to implement due to the
large value of 1/x when z is close to zero, a multiplication
is feasible. In the next part, we demonstrate the design of a
signal multiplier using two SR-ADCs.

A. SR-Multiplier

The output of the SR-ADCs is either +V or —V which
corresponds to a logic “1” or “0”, respectively. Therefore,
the output of the proposed SR-multiplier should be “17, i.e.
positive, when both outputs of the SR-ADCs are the same,
and “0”, i.e. negative, when they are different. Therefore,
an SR-multiplier can be implemented with a combination of
two SR-ADCs and an XNOR gate. The block diagram of
the SR-multiplier is shown in Fig. 5. 1 and z5 denote the
input signals while 7; and 79 are the input noise signals
corresponding to each SR-ADC. 7; and 7, are independent
of each other.

Using the probability of the SR-ADC output derived in



Section III, the probability of y, = 0 is
P(yo =0]x1,22) = P(y1 = 1]21)P(y2 = 0] x2)
+ P(y1 = 0| z1)P(y2 = 1| x2)
= —2P(771 < —71 |JJ1)P(772 < —9 |$2)

+ P(m < —z1|21) + P(ne < —x2 | 22).

(10)

From (1) and (10), the expected output §(x1, x2, 01, 02) can
be calculated by

7 (x1,22,01,02) = V(l —2P(yo = 0| I17I2))
= V(l +4P(n < —z1|z1)P(n2 < —z2 | 22)
— 2(P(771 < —z1]x1) + P2 < —x2 |332)))
(11)

By substituting the P(n,, < —x,, | z,) with §, using (1), as
long as n; and 7, are independent of each other, (11) can be
rewritten as
91(w1,01) - J2(22,02)

V )
which shows that the proposed operator is a multiplier. For

an SR-multiplier using white Gaussian noise sources, (12)
becomes

J(z1,x2,01,09) = Verf (\/:%101> erf <\/§72) . (13)

B. Signal-to-Noise-and-Distortion Ratio

12)

g(zla‘TQvo'hO'Q) =

To determine the gain, distortion, and output noise power,
the methods presented in Section III can be used by substitut-
ing (13) for y in (5). The gains G in case of two sinusoidal
inputs sin(27t) and sin(27t + ¢) are shown in Fig. 6. The SR-
multiplier is subjected to independent white Gaussian noise
sources with equal power, denoted by 2. V is set to 1 and
¢ = [fg,fg 55 g}, such that the correlation
coefficient of the input signals, p = [0, £0.5, +-1]. The signals
are sampled with f; = 100 kHz and the outputs are filtered
by a second-order Butterworth LPF with a cut-off frequency
of 10 Hz. The case with zero correlation (¢ = — 7/2) has
the biggest gain due to its output having zero mean, which
leads to a lower distortion power. As the noise RMS value o
goes up, the gains go down approaching 2V/ (7m2), shown
by the solid line.

The simulated and predicted SNDRs for the same cases are
presented in Fig. 7. SNDR peaks can be observed for every
case where noise is present due to the stochastic resonance.

V. CONCLUSIONS

In this paper, a novel signal conversion and signal process-
ing technique has been discussed. As two examples, an SR-
ADC and an SR-multiplier have been introduced.

In Section III, an analytical method to determine the per-
formance of a fully stochastic resonance ADC is proposed.
Based on the expected output of the quantiser, the signal
power, distortion power and noise power are derived. Since
the spectrum of white noise is preserved by the quantisation
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Fig. 7.  Signal-to-noise-and-distortion ratio of the SR-multiplier for

z1 = sin(2nt) and z2 = sin(27t + ¢), sampled with fs = 100
kHz and filtered by a second-order Butterworth LPF with a cut-off frequency
of 10 Hz. V is set to 1 and ¢ = [—%,—g +5 -5+ %] such that
p = [0,£0.5,£1]. n; and 7o are white, independent, and have equal
RMS values o. The marks indicate the simulated results and the lines are
the predicted results based on the formula. SNDR peaks can be found at
different o for different cases.

step, the filtered output noise can be calculated. The method
can be used for all (periodic) input signals combined with
Gaussian, as well as non-Gaussian white noise. The method
is developed to allow structured analysis of SR-ADC systems
for design purposes and can also be applied to SR-ADCs with
integrated signal processing.

In Section IV, we have shown that SR can be used to do
mathematical operations. Using the stochastic properties of the
1-bit signal acquired by the SR-ADC, a compact and efficient
signal multiplier using an XNOR logic gate can be designed.
It is proven that the proposed operator works as a multiplier
as long as the noise sources are independent of each other.

The observations presented in this paper show a potential for
analog to digital conversion and integrated signal processing
fully based on stochastic resonance. For low-frequency signal
reconstruction in high-noise environments, the SR-ADC can
be a simple and efficient alternative for conventional analog
front-ends and signal processing.
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