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Abstract—An analog filter is designed based upon the 
requirement of an interference rejection filter for the 
Quadrature Downconversion Autocorrelation Receiver 
(QDAR). The transfer function of an eight-order elliptic band-
pass filter is selected. As a result, a state-space approach (i.e. 
the orthonormal form [1]) is adopted, which is intrinsically 
semi-optimized for dynamic range, has low sensitivity, high 
sparsity and its coefficients can be physically implemented.  
Each coefficient in the state-space description of the filter is 
implemented at circuit level using a novel 2-stage gm cell based 
upon the principle of negative feedback. Simulation results in 
IBM’s Bi-CMOS 0.18 µm technology show that the interference 
rejection filter requires a total current of 90 mA at a 1.8 V 
power supply. The 1-dB compression point of the filter is at 565 
mV and the SNR is 47.5 dB. On performing a Monte Carlo 
simulation, it becomes evident that the overall filters transfer 
response does not suffer from process variations. 

Keywords—ultra-wideband, narrowband interference, state-
space synthesis, orthonormal filter, quadrature downconversion 
autocorrelation receiver, analog integrated circuits 

I. INTRODUCTION 
Although impulse radio ultra-wideband technology promises 

enhanced data throughput with low-power consumption, it 
inseparably introduces several challenging design issues. Ultra-
wideband systems transmit at very low spectral densities and occupy 
a large amount of bandwidth, thus it is unequivocal that interference 
introduced from neighboring narrowband systems is a serious 
predicament, which could severely hamper or even degrade the 
overall performance of the system.  

Among currently investigated UWB receiver architectures, the 
transmitted reference scheme proposed by Hoctor and Tomlinson 
[2] resolves the issue not only of synchronization but also of 
multipath components. In this scheme, consecutive pulses are 
transmitted with a predefined delay τ between them. The first pulse 
acts as a reference, whereas the second pulse is modulated. The 
autocorrelation receiver correlates the incoming signal with a 
delayed version of itself. The absolute value of the output after 
integration is in fact the energy of the pulse while the polarity of the 
output contains the data. The issue of narrowband interference led us 
to the design of novel receiver architecture i.e. the quadrature 
downconversion autocorrelation receiver (QDAR) (see Fig. 1.) [3], 

which is capable of operating in the presence of strong narrowband 
interference. It uses the property of frequency wrapping or in other 
words, it folds the ultra-wideband frequency spectrum around the 
origin. At the same time, interferers are positioned outside the band 
of interest and can be simply removed by the means of a band-pass 
filter (see Figure 2). Even though the bandwidth reduces 
significantly and the shape of the transmitter pulse is distorted, the 
QDAR makes use of the fact that detection with an autocorrelation 
receiver is feasible as long as the relative polarity and shape of 
consecutive pulses is preserved.  

350MHz - 2.4GHz

350MHz - 2.4GHz

X

phase
shift 90o

osc
interference

rejection filter - BPF

interference
rejection filter - BPF

I - inphase

Q - quadrature

LNA

X

autocorrelation
function

X

τ

autocorrelation
function

X

Antenna

τ

∑
integrate

and
dump

 
Fig. 1. Quadrature downconversion autocorrelation receiver (QDAR) 
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Fig. 2. left) frequency spectrum before downconversion and right) after 

downconversion 
This paper proposes an interference rejection (i.e. an eighth 

order elliptic band pass) filter to be used in the QDAR (see Fig. 1). 
Section 2 relates the transformation procedure of the transfer 
function of the band pass filter into the orthonormal state-space 
form.  Transconductance amplifiers are frequently employed in 
filters designed for high-frequency applications, and are employed 
in this particular case of impulse radio ultra-wideband circuit design. 
Section 3 describes the design and implementation of the 2-stage 
negative feedback transconductance cell. Simulation data of the 
transconductance amplifier as well as the overall filter transfer is 
given in Section 4. Section 5 presents the conclusions. 
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II. FILTER DESIGN 

A.  Transfer function and state-space synthesis 
The analysis in [3] showed that, after downconversion, the 

interferer moves adjacent to the band of interest. The 5 GHz 
interferer appears below 350 MHz and the 2.4 GHz interferer 
beyond 3.1 GHz, when down-converting with an oscillator 
frequency of 5.5 GHz.   

Trade-offs between slope, attenuation and circuit complexity are 
taken into consideration prior to choosing the order of the filter. An 
elliptic filter gives the steepest slope for any given order and is 
therefore the appropriate choice. The abovementioned extenuates 
the requirement for an eighth order elliptic band-pass filter. The 
transfer function (see below) of the interference rejection filter is 
generated using Matlab. The corner frequencies are set at 350 MHz 
and 2.6 GHz. The stop-band attenuation is at least 20 dB and the 
pass-band ripple is 0.5 dB. 
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 Once the desired transfer function is formulated, its state-space 

description is then determined. A state-space description for a given 
transfer function is not unique, meaning that many state-space 
descriptions can implement the same transfer function.  Moreover, a 
state-space description of any filter transfer function should be 
optimized for dynamic range, sensitivity, sparsity and the coefficient 
values [1], [4]. 

B. Orthononormal Ladder Structure 
Among known standard state-space descriptions, such as the 

canonical, the diagonal and the modal, the orthonormal ladder form 
is notable since it is by definition semi-optimized for dynamic range 
due to the specific structure of the matrices. Furthermore, since it is 
derived from a ladder structure, it is intrinsically less sensitive and 
the matrices are highly sparse. A detailed explanation of the 
procedure to derive the orthonormal ladder form can be found in [5].  

With a state-space approach, the filter can be optimized for 
dynamic range, sensitivity, sparsity and coefficient values. A low 
sensitivity suppresses the effect of component variations on the 
transfer function. It can be proved that a filter that is optimized for 
dynamic range is also optimized for sensitivity [6].  The sparsity of 
the matrices directly determines the circuit complexity. State-space 
descriptions of filters with more zero elements require less hardware 
and are likely to consume lower power. Thus, it is therefore an 
important design aspect of state-space filters. 

In respect to a fully optimized and fully dense state-space 
description, the resulting semi-optimal orthonormal filter structure 
differs only by about 2 dB in dynamic range. The A, B, C, and D 
matrices of the defined transfer function are as follows: 
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Matrix B:

 

3.048e+4    -1.64e-10    -9.022e+4    2.476e-11    1.026e+5    4.307e-11    8.596e+4    -2.253e+4
Matrix C:

 

Matrix D:
0.09998  

C. Scaling –Capacitance and Coefficient Values 
Transconductance amplifiers will form the basic building blocks 

to implement the state-space description of the band-pass filter. The 
integrators are implemented as capacitors with a normalized value of 
1 F. The corresponding matrices A, B, C and D have extremely large 
coefficients corresponding to large gm values, which are not 
physically feasible at circuit level. By scaling the capacitors (cap=1 
pF), one consequently scales matrices A and C. Coefficients of 
matrices B and D can too be down scaled by α1 and α2 respectively, 
without affecting the response of the filter. 
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The block diagram of the state-space filter is shown in Fig. 3 
and has 22 non-zero coefficients.   
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Fig. 3. Complete state-space filter structure 
Once the block diagram has been recognized, a 

transconductance amplifier implements every coefficient. 

III. TRANSCONDUCTANCE AMPLIFIER 
The transconductance amplifier is implemented using a negative 

feedback structure consisting of an active circuit, which implements 
a nullor and a feedback network (see Fig. 4). Theoretically, the 
nullor is an ideal block that has infinite transfer parameters. 
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Fig. 4. Negative feedback amplifier with impedance in the feedback 

network 
The orthonormal structure has both positive as well as negative 

coefficients. Since the structure in Fig. 4 can only implement a 
negative coefficient, a differential topology is used. Another 
advantage of using the latter is the cancellation of even order 
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distortion terms that arise from the actual nullor implementation, 
thus improving linearity. 

The nullor (half circuit) is realized using a cascode (CE-CG) 
stage formed by transistors (Q1-Q2) at the input, and a non-inverting 
cross-coupled differential pair (Q3-Q4) at the output. The feedback 
network is made up of a resistor R (see Fig. 5). 
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Fig. 5. 2-stage negative feedback gm amplifier 

The CB-stage not only presents an output resistance that is 
larger by gm2rds2 but also reduces Miller’s effect of the CE-stage [7]. 
As compared to a single-stage implementation, a 2-stage nullor 
improves the loop gain, which yields higher linearity as well as 
bandwidth [7] at the expense of power consumption. In reference to 
stability, frequency compensation in the form of pole-zero 
cancellation is also applied to this transconductance amplifier. For 
biasing of the differential structure, the common-mode voltage is 
sensed at the outputs and is compared to the desired reference 
voltage using a voltage-controlled-current source (VCCS). Its 
implementation is shown at left in Fig. 5. The output current 
delivered by the VCCS is then applied to a virtual ground node, V. 

The small-signal behavior of the transconductance cell will now 
be analyzed. 

A. Small-signal Analysis 
The integrating capacitors (Cs) at the input and output have also 

been taken into account. 
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Fig. 6. Small signal model of the gm cell  

For negative feedback amplifiers [7], the closed loop transfer 
(At) can be written in terms of the loop gain Aβ(s) as, 
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where ν and ξ represent the input and output coupling factors and 
both are assumed to be equal to one. 

At∞ is defined as, 

 β
1
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 (3) 

where β is the feedback transfer.  Now Aβ(s) can be expressed as, 
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where gm1 and gm2 are the transistor transconductances of the CE-
stage and the differential pair, respectively, rπ1,cπ1 and rπ2,cπ2 are 
the base-emitter resistances and capacitances of Q1 and Q3-4, 
respectively and R is the feedback resistance. Note that for 
simplicity, terms with Cs (i.e. integrating capacitances of matrix A) 
will be neglected. 

Simplifying by substituting (5) in (4) and assuming that ro>>1, 
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one obtains, 
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Substituting (6) in (2) and for large enough loop gains, the 
transfer is accurately determined by the feedback transfer β. 

               ( )
( ) RsA
sA

R
At 1

1
1

−≈⎥
⎦

⎤
⎢
⎣

⎡
−
−

⋅−=
β

β  (7) 

The DC-loop gain poles product (LP2) predicts the bandwidth of 
the system and is stated in (7). 

               212 )0( ppALP ⋅⋅≈ β  (8) 

Substituting dc loop gain Aβ(0) (9), closed loop poles p1 and p2 
((10) and (11), respectively) in (8), 
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the bandwidth, BW, of the proposed 2-stage transconductance 
amplifier is approximately equal to the geometric mean of the transit 
frequencies of the respective stages [7]. 

               TTT fLPBWffLP ≈≈⋅≈ → 2212  (12) 
The influence on the transfer by the non-ideal coupling at the 

input and output modeled via (ξ) and (ν) [7], respectively, needs to 
be taken into account. This aspect will result in a BW to some extent 
lower than fT. The gm-C topology is implemented in IBM’s 0.18 µm 
Bi-CMOS technology. In the same technology, the bias sources in 
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Fig. 5 are implemented using current mirrors with multiple outputs. 
All parasitic sources are also accounted for. 

IV. SIMULATION RESULTS 
Fig. 7 shows the magnitude and phase response of the stand-

alone transconductance amplifier, which is used in the band-pass 
filter. Both the magnitude and the phase demonstrate a relatively flat 
response up to about 3 GHz. 

 
Fig. 7. Magnitude and phase transfer of stand-alone gm cell 

From Fig. 8 it is clear that the high-frequency response of the 
entire filter is preserved at the cost of forfeiting some of the pass-
band at lower frequencies. By scaling down the capacitance even 
lower than 1 pF as well as the coefficients in the matrices A and C, a 
superior transfer response is attainable because of the trade-off 
between bandwidth and gain. 

 
Fig. 8. Transfer of elliptic band-pass filter 

Finally, by randomly varying (i.e. 25 iterations) the component 
tolerances as well as the model parameters between their specified 
tolerance limits, a Monte Carlo analysis is run in order to estimate 
the circuit’s sensitivity. From Fig. 9 it is inferred that the transfer of 
the filter is relatively unlikely to show a substantial discrepancy as a 
result of process variations. 

 
Fig. 9. Sensitivity analyses – Monte Carlo 

Table I highlights the simulation parameters of the band-pass 
filter. 

Table 1 Simulation Parameters 

Specifications Simulated (@ 1GHz) 

1-dB compression pt. at 565 mV 

3-dB compression pt. at 575 mV 

Dynamic range at 1-dB 
compression pt. (SNR) 

+47.5 dB 

IVIP3 (third-order input referred 
voltage intercept pt.) 

+14 dBV 
 

OIIP3 (third-order output referred 
current intercept pt.) 

-47.6 dBA 

Current consumption 90 mA @ 1.8 V 

Process IBM Bi-CMOS 0.18µm 

V. CONCLUSIONS 
An interference rejection band-pass filter is to be used in the 

QDAR has been presented. An eighth order transfer function for an 
elliptic filter is selected. Subsequently, an orthonormal state-space 
approach is adopted, which fulfills the requirements of dynamic 
range, sensitivity, and sparsity. The coefficients are down scaled in 
conjunction with capacitance values. Each element of the filter is 
implemented at the circuit level using a novel negative feedback 2-
stage gm amplifier. Simulation results in IBM’s Bi-CMOS 0.18 µm 
technology (see Table 1) show that the interference rejection filter 
requires a total current 90 mA at a 1.8 V power supply. The 1-dB 
compression point of the filter is at 565 mV and the SNR is 47.5 dB. 
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