A COMPACT nA/V CMOS TRIODE-TRANSCONDUCTOR AND ITS APPLICATION TO VERY-LOW FREQUENCY FILTERS

Jader A. De Lima¹ & Wouter A. Serdijn²

- 1. Brazil Semiconductor Technological Center, Freescale Semiconductor, 13820-000 Jaguariúna SP, Brazil 2. Electronics Research Laboratory, Faculty of Electrical Eng., Delft University of Technology, Delft, The Netherlands
- A simple nA/V CMOS transconductor for ultra-low power low-frequency g_m -C filters is introduced. Its input transistors are kept in the triode-region to benefit from the lowest g_m/I_D ratio. In contrast with weak inversion current-controlled techniques that demand an extremely low I_D , which is difficult to obtain precisely, the g_m is adjusted by a well defined (W/L) and V_{DS} , the latter a replica of the tuning voltage V_{TUNE} . Since the minimum V_{DS} is still considerably above the equivalent noise of the replica circuit, an improved control of g_m is achieved. The resulting design complies with V_{DD} =1.5V and a 0.35 μ m CMOS process. Its g_m ranges from 1.1 μ n/V to 5.5 μ n/V for 10 μ 0 μ 10 for 10 μ 0 μ 10 set of PSPICE simulations supports theoretical results. A designed bandpass filter has a 5 μ 12-center frequency and has a maximum idle dissipation of 17 μ 10, whereas SNR=59.2dB for THD<1% @150 μ 10 peak value.

I. INTRODUCTION

On-chip realizations of large time constants are often required to design low cutoff-frequency (in the Hz and sub-Hz range) continuous-time filters in applications such as integrated sensors, biomedical signal-processing and neural networks. Due to their low-voltage low-power (LVLP) compatibility, $g_m\text{-}C$ structures are a natural choice to perform the desired filtering characteristic. To limit capacitors to practicable values, a transconductor with an extremely small transconductance g_m (typically a few nA/V) is needed.

Previous work on LVLP CMOS techniques for obtaining very-low transconductances essentially combines different strategies such as voltage attenuation, source degeneration and current splitting [1-4]. The intrinsic input-voltage attenuating properties of floating-gate and bulk-driven techniques are exploited in [1]. The former solution demands nonetheless a double-poly fabrication process, whereas the latter implies in a finite inputimpedance transconductor and lack of precision, as the bulk transconductance gmb is very process-dependent. In the sourcedegeneration scheme presented in [2], a triode-biased transistor acts as a simple voltage-controlled resistor. Matching is a crucial problem in current splitting, since a large number of unity-cell transistors compose the current mirrors to implement very-high division factors. In [3], a downscaling factor of 40,000 is proposed, and in order to have all devices in strong-inversion for improved mirroring, a bias current of 15µA is forced. Because the final current of around 400pA is well above leakage, a more predictable transconductance is obtained, at the expense of power consumption. Conversely, a smaller division factor of 784 and a lower bias current are defined in [4], reducing the final current to only a few pA, which implies a less accurate transconductance.

Even though working either in weak, moderate or strong inversion, the transconductor input-transistor is always kept in saturation in the above-mentioned techniques. However, the lowest g_m/I_D ratio is obtained in strong-inversion triode-region (SI-TR), as

discussed in Section II. Although this feature compromises the use of triode-transconductors in very-high frequency g_m-C filters, it turns out attractive when operation in the lower end of the frequency spectrum is devised. In [5], a low-g_m pseudo-differential transconductor based on a four-quadrant multiplication scheme is presented, in which the drain voltage of a triode-operating transistor follows the incoming signal. Nevertheless, because triode operation needs to be sustained, the input-signal swing is rather limited. Moreover, this solution only applies to balanced structures. Although triode-transconductors, in which the signal is directly connected to the input-transistor gate, have been successfully employed in high-frequency g_m-C filters [6,7], its potential for very-low frequency filter designing has not been exploited in the open literature.

This paper discusses the advantages and shortcomings of using a SI-TR transconductor to design ultra-low power low frequency $g_m\text{-}C$ filters. Contrary to previous approaches, g_m is now controlled by a voltage rather than by a current. In a SI-TR MOSFET, by connecting the source terminal to one of the supply rails, a control voltage applied to the drain linearly adjusts g_m , as the latter scales with V_{DS} . Since (W/L) offers a degree of freedom in sizing g_m , V_{DS} values well above the equivalent noise of the replica circuit can be set, while still obtaining a very-low g_m . Consequently, filters with more predictable frequency characteristics can be implemented. Owing to its extended linearity, the SI-TR transconductor also handles larger signals, with no need for linearization techniques.

II. TRANSCONDUCTOR DESCRIPTION

A. Why strong-inversion triode-region?

The g_m/I_D ratio and the normalized drain current ratio N_{ID} , here defined as I_D/I_{D_SI-TR} , where I_{D_SI-TR} is the drain current in SI-TR, are listed in Table I, for distinct MOSFET regions: SI-TR, weak-inversion saturation (WI-S) and strong-inversion saturation (SI-S). The gate-overdrive voltage is $V_{GO}=V_{GS}-V_{TO}$, where V_{TO} is the threshold voltage. U_T and n are the thermal voltage and the weak-inversion slope factor, respectively. As it can be noted, for a source-grounded device and V_{DS} small, the lowest g_m/I_D occurs for SI-TR operation, as V_{GO} can be set much higher than nU_T

For a given g_m , the current level in WI-S may easily become one order of magnitude lower than the one in SI-TR. For example, if $V_{\rm GO}=300{\rm mV}$, $V_{\rm DS}=20{\rm mV}$, n=1.2 and $U_{\rm T}=25{\rm mV}$, it turns out $N_{\rm ID}=0.10$ for WI-S. For a specified $g_m=2nA/V$, the required $I_{\rm D}$ in WI-S is only 60pA, whereas in SI-TR $I_{\rm D}$ reaches 600pA. Although WI-S operation reduces the current/power consumption, the $I_{\rm D}$ required for a very-low g_m approximates the bound imposed by the junction leakage and its variation with temperature. Therefore, generating such a current reliably is difficult to achieve.

	WI-S	SI-TR	SI-S
$\frac{g_{\text{m}}}{I_{\text{D}}}$	$\frac{1}{\mathrm{nU}_{\mathrm{T}}}$	$\frac{1}{V_{GO} - \frac{nV_{DS}}{2}}$	$\frac{2}{V_{GO}-nV_S}$
N _{ID}	$\frac{nU_T}{V_{GO} - \frac{nV_{DS}}{2}}$	1	$\frac{V_{GO} - nV_S}{2V_{GO} - nV_{DS}}$

Table I. g_m/I_D and N_{ID} ratios in different operation regions

B. Triode-Transconductor Circuit

A transconductor with a minimum transistor count helps reducing the equivalent noise. In this line, a compact triode-transconductor is proposed in Fig. 1. Input transistors $M_{1A}\text{-}M_{1B}$ have their drain voltages regulated by an auxiliary amplifier that comprises $M_{2A}\text{-}M_{2B},\ M_{3A}\text{-}M_{3B}$ and bias current sources $M_{5A}\text{-}M_{5B}.$ A simple current mirror $M_{4A}\text{-}M_{4B}$ provides a single-ended output. Transistors are assumed pair-wise matched. Although the gate-source voltages of M_{3A} and M_{4A} are stacked, their values are below V_{TOn} , so that the circuit still complies with low-voltage requirements. The gate-voltage of $M_{2A}\text{-}M_{2B}$ is set to $V_{C}\text{=}V_{TUNE}\text{-}|V_{GS2}|$, whereas V_{B} imposes a bias current I_{B} through $M_{5A}\text{-}M_{5B}.$ Both voltages V_{B} and V_{C} are generated on-chip. Referring V_{TUNE} to V_{DD} and denoting $\beta_{1}\text{=}(W/L)_{1}\mu_{p}C_{ox}$, the transconductance of the entire circuit is

Fig. 1. Compact triode-transconductor

P-type input-transistors were chosen due to lower mobility and 1/f-noise coefficients as compared to similar parameters of n-MOSFETs. Except for $M_{1A}\text{-}M_{1B}$ that stay in SI-TR, all remaining devices work in WI-S. Assuming M_{5A} (M_{5B}) to be ideal current sources, the transconductor output resistance r_{out} is given by

$$r_{\text{out}} \cong r_{\text{ds1}} \left(1 + g_{\text{m2}} r_{\text{ds2}} \right) \tag{2}$$

Even though a common-drain configuration M_{3B} is seen from the output node, the transconductor still exhibits a relatively high output resistance, as the loop gain around M_{2B} and M_{3B} is relatively large.

To ensure that M_{IA} - M_{IB} remain in SI-TR, a trade-off between V_{TUNE} range and signal excursion should be established. Since the transconductor is usually embedded in a feedback topology in g_m -C filters, an identical swing should be assumed at input and output nodes. Lower and upper signal bounds, respectively V_{min} and V_{max} , are defined in Table II.

V _{min}	$V_{SS} + V_{DSAT4B}$
V _{max}	$min(V_{in_max}, V_{out_max})$
$V_{\text{in_max}}$	$V_{\mathrm{DD}} - \left V_{\mathrm{DS1\;max}}\right - \left V_{\mathrm{TO1}}\right $
V_{out_max}	$V_{\text{DD}} - \left V_{\text{DS1 max}}\right - \left V_{\text{DSAT2B}}\right - V_{\text{GS3B}}$

Table II. Signal swing at transconductor input/output nodes

Common-mode voltage V_{AGND} that optimizes signal swing is V_{AGND} = $(V_{max}+V_{min})/2$, so that class-A operation is ensured by

$$\begin{split} I_{_{B}} < \beta \text{I} \Bigg[& \bigg(V_{\text{DD}} - V_{\text{AGND}} - V_{\text{max}} - \left| V_{\text{TOI}} \right| - \frac{n_{p} V_{\text{DSI max}}}{2} \bigg) V_{\text{DSI max}} \Bigg] \\ & = I_{\text{D1_Max}} \quad (3) \end{split}$$

C. Bias Generator

Internal voltages V_B and V_C are derived from the circuit shown in Fig. 2. The generator is structurally alike the transconductor, with M_{1G} , M_{2G} and M_{3G} ideally matched to their counterparts. A servo-amplifier regulates M_{1G} drain-voltage to external voltage V_{TUNE} , so that $V_C \cong V_{TUNE} - \left| V_{GS2G} \right|$. Since $V_{GS2G} = V_{GS2B} = V_{GS2B}$, the expected value of V_C is achieved. A low-voltage OTA, with a topology similar to the one in [7], is employed as a servo-amplifier. Properly setting the current gain B (B > 1) in M_{4G} - M_{5G} guarantees the value of I_B that complies with (3), while tracking down parameter variations on M_{1A} (M_{1B}).

Fig. 2. Bias generator

D. Noise Properties

The MOSFET power spectral density (PSD) noise can be modeled either by a gate voltage source $V_n^{\ 2}$ or a current source $I_n^{\ 2}$ between drain and source. The latter is given by

$$I_n^2 = 4KTG_{nth} + \frac{K_F I_D^{A_F}}{C_{ox}L^2} \frac{1}{f^{E_F}}$$
 (4)

with $G_{nth} = g_m$ in SI-TR and $G_{nth} = g_m/2$ in WI-S [8], whereas K_F , A_F and E_F are 1/f-noise fitting coefficients. Even though the

dependence of the 1/f-noise component on transistor geometry and drain current varies with the operating region [9], such a fact is here disregarded, as available data on K_F were obtained using (6). Therefore, K_F is herein assumed constant with transistor bias, which has no physical support, particularly in ST-TR [9].

The circuit to evaluate the transconductor equivalent noise is shown in Fig. 3. For simplicity, only half-circuit of the transconductor is considered. Noise from M_3 , M_4 and M_5 are represented by current sources, while those from M_1 - M_2 are modeled as a voltage source $V_{ni}^2 = I_{ni}^2/g_{mi}^2$, for i = 1,2. Upon usual assumption of uncorrelated noise sources and $g_m r_{ds} >> 1$, the inputreferred noise V_{nin}^2 is

$$\frac{{V_{\rm nin}}^2}{2} = {V_{\rm n1}}^2 + {k_2}^2 {V_{\rm n2}}^2 + {k_3}^2 {I_{\rm n3}}^2 + {k_4}^2 {I_{\rm n4}}^2 + {k_5}^2 {I_{\rm n5}}^2 \eqno(5)$$

where coefficients k_2,k_3,k_4 and k_5 are listed in Table III. The intrinsic voltage-gain of M_1 corresponds to $\alpha_1 \cong -g_{ml}/g_{ds1}$, where $g_{ds1} = 1/r_{ds1}$. Since $|\alpha_1| << 1$ usually occurs, the noise from M_2 is amplified when referred to the transconductor input. The 1/f-noise term on V_{n1}^2 is naturally minimized, as the gate-length of M_1 is chosen considerably long to obtain a very-low g_{m1} .

Fig. 3. Equivalent circuit for the transconductor noise analysis

k ₂	$1/(g_{m1}r_{ds1})$
k ₃	0
k_4	$1/g_{m1}$
k ₅	$1/g_{m1}$

Table III. Coefficients $k_2,\,k_3,\,k_4$ and k_5

III. TRANSCONDUCTOR AND FILTER DESIGN

To back up the theoretical analysis, a SI-TR transconductor with g_m in the order of nA/V was designed and used as a building part in a low-frequency bandpass filter. The design complies with $V_{DD}{=}1.5V$ and a standard 0.35 μm n-well CMOS process, with typical parameters $V_{THN}{=}0.50V,\,V_{THP}{=}$ -0.60V, γ_n =0.58V $^{1/2},\,\gamma_p$ =0.45V $^{1/2},\,\mu_n$ =403cm 2 /Vs, μ_p =129cm 2 /Vs and C_{ox} =446nF/cm 2 . Flicker-noise coefficients are $K_{Fn}{=}2.81e{-}27A^2s/V,\,K_{Fp}{=}1.09e{-}27A^2s/V,\,A_{Fn}{=}1.40,\,A_{Fn}{=}1.29$ and $E_{Fn}{=}E_{Fp}{=}1.$

The tuning interval ranges from 10mV to 50mV, which implies $1.1 nA/V \le g_{ml} \le 5.5 nA/V$. The optimal V_{AGND} is 0.6V,

theoretically limiting the signal amplitude to 185mV. Transistor sizes (in $\mu m/\mu m$) are (W/L)₁=(1.2/600), (W/L)₂=(10/100), (W/L)₃=(12/2.4) and (W/L)₄ = (W/L)₅ = (40/40). These dimensions were determined with the aid of (5) and trade off 1/f-noise and layout area. Also, they comply with the weak-inversion onset $I_{lim}=2n(W/L)_1\mu_pC_{ox}U_T^2$ [9]. At nominal $V_{TUNE}=20mV$, the calculated g_{m1} and common-mode current I_{D1CM} are 2.2nA/V and 0.63nA, respectively. A lossless integrator with $C_{LOAD}=60pF$ has a unity-gain frequency f_{int} of 5.8Hz. Setting B=1.5 results in $I_B\cong0.25nA$, a good compromise between signal swing, 1/f-noise of $M_{2A}-M_{2B}$ and $M_{5A}-M_{5B}$, thermal noise and auxiliary-amplifier power consumption

The gyrator-capacitor biquad bandpass filter of Fig. 4 was selected as an application example of the SI-TR transconductor. Assuming identical transconductors with $g_{m1}{=}2.2 nA/V$, the calculated center frequency f_c is 5.8Hz. Owing to the large M_1 gate-area, the integrating capacitors should account for the transconductor input-capacitance C_{in} . For a SI-TR MOSFET, $C_{GS}{=}$ $C_{GD}{=}$ (1/2)WLCox, and, since $\left|\alpha_1\right|{<<}$ 1, the Miller effect can be neglected, yielding $C_{in} \cong W_1 L_1 Cox$. Since V_{TUNE} is shared by all stages, a single bias-generator circuit can be used.

Fig. 4. Bandpass biquad filter

IV. SIMULATION RESULTS

Simulations were carried out using PSPICE 9.2 with Bsim3v3 models. With respect to its calculated value, V_{AGND} is decreased to 0.55V to improve the SNR, as observed in simulations. For a 1K Ω -load, fixing $V_{in}^- = V_{AGND}$ and sweeping V_{in}^+ , the g_{m1} dependence on tuning for $10 \text{mV} \leq V_{TUNE} \leq 50 \text{mV}$ is plotted in Fig. 5. The transconductance remains almost constant in the linear region, scaling linearly with V_{DS1} .

The basic integrator exhibits $f_{int}=5.0$ Hz and an excess-phase of 0.6°, which indicates that the phase error is due to stray capacitances rather than to a finite r_{out} . Transconductor noise figures from PSPICE are in close agreement with the noise analysis of Section II. Calculation from (5) results in $51\mu V/\sqrt{Hz}$ @100mHz, $32\mu V/\sqrt{Hz}$ @10Hz (thermal component) and a corner frequency f_{nc} around 1Hz, whereas PSPICE gives $62\mu V/\sqrt{Hz}$ @100mHz, $43\mu V/\sqrt{Hz}$ @10Hz and $f_{nc} \cong 1$ Hz. The transconductor equivalent noise voltage for a 100mHz-10Hz bandwidth is $260\mu V_{RMS}$. Similarly, the input-referred noise of the V_C generator is $42\mu V_{RMS}$, so that for the lowest V_{TUNE} of 10mV, a tuning-to-noise ratio (TNR) of 47dB is obtained. Given that transistor geometries are well defined in modern fabrication processes, g_m can be controlled to a good extent, as it relies only on $(W/L)_1$ and V_{TUNE} .

Fig. 5. Dependence of g_m on signal level and tuning

The frequency response of the bandpass section as function of the tuning voltage is displayed in Fig. 6. For $10 mV \!\! \leq \!\! V_{TUNE} \!\! \leq \!\! 50 mV$, the center frequency ranges from 2.46Hz to 13.2Hz. A linear control of f_c by V_{TUNE} is observed, at a rate of 0.27Hz/mV. For comparison, the calculated f_c range and tuning rate are 2.9Hz $\!\! \leq \!\! fc \leq \! 14.5$ Hz and 0.30Hz/mV, respectively. The maximum stand-by consumption of the filter is as low as 17nW. Assuming V_{TUNE} and V_{AGND} referred to V_{DD} , the filter characteristic suffers from no meaningful alteration, as the sensitivity of f_c to V_{DD} is only 0.7%.

At nominal tuning, the in-band equivalent noise is $116\mu V_{RMS}.$ Large-signal distortion corresponds to THD=1% for an amplitude of 150mV, so that an SNR of 59.2dB is attained. Since HD2 dominates, one may assume that a balanced version of the proposed transconductor would present better linearity. Monte Carlo analysis for a spread of $\pm 0.5\%$ on both (W/L) and V_{TO} parameters on every transistor of the filter revealed that the amplitude should be limited to 137mV to retain THD≤1%.

Fig. 6. Filter frequency response as function of tuning voltage

V. CONCLUSION

A compact CMOS transconductor suitable for ultra-low power g_m -C filters operating in the Hz and sub-Hz range has been proposed. Input transistors are kept in strong-inversion trioderegion to profit from the lowest g_m/I_D . Because their drain voltages are regulated to V_{TUNE} by an auxiliary amplifier, g_m scales directly with (W/L) and V_{TUNE} . Such a voltage-controlled approach offers improved accuracy in obtaining g_m values in the order of nA/V, as the required I_D can be set well above expected values of leakage current.

The design was realized in accordance with V_{DD} =1.5V and a 0.35µm n-well CMOS process. Simulation data were obtained with PSPICE and Bsim3v3 models. The tuning voltage V_{TUNE} spans from 10mV to 50mV, yielding 1.1nA/V $\leq g_m \leq 5.5$ nA/V. For nominal g_m =2.2nA/V and C=60pF, the integrator unity-gain frequency and phase error are 5Hz and 0.6°, respectively, while the equivalent voltage noise is 340µV, for a 0.1Hz-10Hz bandwidth. Since the tuning-to-noise ratio TNR equals 47dB, accurate g_m control is achieved. As a design example, a bandpass filter is tuned from 2.46Hz to 13.2Hz, featuring a SNR of 59.2dB for THD=1%@150mV peak-value. The maximum stand-by consumption is only 17nW.

One may thus conclude that the proposed technique can be successfully applied to the design of low-frequency filters in power-stringent environments, such as human-implanted devices.

VI. ACKNOWLEDGMENT

J. A. De Lima would like to thank Brazilian Foundations FAPESP and CNPq for their continuous support on integrated circuit research and fabrication.

VII. REFERENCES

- [1] Veeravalli, A. et al.—"Transconductance Amplifier Structures With Very Small Transconductances: A Comparative Design Approach", IEEE JSSC, Vol. 37, No. 6, pp 770-775, June 2002
- [2] Silva-Martínez, J. & Salcedo-Suner "IC Voltage to Current Transducers with Very Small Transconductances", Analog Int. Circuits and Signal Processing, Vol. 13, pp 285-293, 1997.
- [3] Steyaert, M., Kinget, P., Sansen, W. & Van Der Spigel, J. "Full Integration of Extremely Large Time Constants in CMOS", Electronics Letters, Vol. 27, No. 10, pp. 790-791, 1991.
- [4] Arnaud, A. & Galup-Montoro, C. "A Fully Integrated 0.5-7 Hz CMOS Bandpass Amplifier", Proc. of IEEE ISCAS, Vol. 1, pp. 445 448, Vancouver, Canada, 2004.
- [5] Veeravalli, A., Sánchez-Sinencio, E. & Silva-Martínez, J. –"A CMOS Transconductance Amplifier Architecture with Wide Tuning Range for Very Low Frequency Applications", IEEE JSSC, Vol. 37, No. 6, pp 776-781, June 2002.
- [6] Pennock, J. "CMOS Triode Transconductor for Continuous-Time Active Integrated Filters", *Electronic Letters*, Vol.21, No.18, August 1985.
- [7] De Lima, J. A. & Dualibe C. "A Linearly-Tunable CMOS Transconductor with Improved Common-Mode Stability and its Application to gm-C Filters", IEEE TCAS-II, Vol.48, No.7, pp. 649-660, July 2001.
- [8] Enz, C., Krummenacher, F. & Vittoz, E. "An Analytical MOS Transistor Model Valid in All Regions of Operation and Dedicated to Low-Voltage and Low-Current Applications", Analog Integrated Circuits and Signal Processing, Vol.8, pp. 88-114, July 1995.
- [9] Nemirovsky, Y., Brouk, I. & Jakobson C. "1/f Noise in CMOS Transistors for Analog Applications", IEEE TED, Vol.48, No.5, pp 921-927, May 2001.