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Abstract— This paper presents an analog implementation of the com-
plex wavelet transform using both the complex first order system (CFOS)
and the Padé approximation. The complex wavelet filter design is based
on the combination of the real and the imaginary state-space descriptions
that implement the respective transfer functions. In other words, a
complex filter is implemented by an ordinary state-space structure for the
real part and an extra C matrix for the imaginary part. Several complex
wavelets, such as Gabor, Gaussian and Morlet complex wavelets, are
obtained and simulations demonstrate excellent approximations to the
ideal wavelets.

I. INTRODUCTION

Complex wavelets provide more detailed information in transient
signal detection than real-valued wavelets. Often the wavelet trans-
form of a real signal with complex wavelet is plotted in modulus-
phase form, rather than in real and imaginary representation. In the
complex wavelet transform analysis, the modulus maxima and the
phase crossings point out the locations of sharp signal transitions.
Nevertheless, the phase information reveals isolated singularities in
a signal more accurately than does the modulus [1]. Also, using the
phase information, different kinds of transition points of the analyzed
signal, i.e. local maxima and inflection points, can be distinguished.
For instance, using the first complex Gaussian wavelet (cgau1),
the −π to +π phase crossings correspond to the inflection points,
whereas the phase transition between ±π to 0 is associated with the
local maxima points (peaks), as one can see in Fig.1.

Fig. 1. Complex wavelet transform using cgau1 (a) Input signal (b) Wavelet
transform coefficient line (a = 4) - Modulus (c) Wavelet transform coefficient
line (a = 4) - Phase

Section II treats the complex wavelet bases and deals with the

computation of a transfer function which describes a certain wavelet
base that can be implemented as an analog filter. Section III describes
the circuit designs. Some results provided by simulations are given
in Section IV. Finally, Section V presents the conclusions.

II. COMPLEX WAVELET FILTERS

A. Complex wavelet bases

One example of a complex wavelet function is the Gabor wavelet.
The Gabor wavelet is obtained from a complex Gaussian function
(complex exponential windowed by a Gaussian function) as basic
functions [2], as described by

ψ(t) = C · e−jωte−t2 = Ccos(ωt)e−t
2 − jCsin(ωt)e−t

2

(1)

where e−jωte−t
2

is the complex Gaussian function and C is a
normalizing constant. From the Gabor wavelet one can derive some
complex wavelet families, e.g. the complex Gaussian and the complex
Morlet. The complex Morlet wavelet is obtained by simply applying
ω = π

√
2
ln2
' 5.3364 [3] in Eq.1.

The complex Gaussian wavelet family is defined from the deriva-
tives of the Gabor wavelet [2] and is given by

ψn(t) = Cn · d
n

dtn
(e−jωte−t

2

) (2)

where n denotes the order, d
dt

is the symbolic derivative and C is a
normalizing constant, which depends of n.

The wavelet used in this paper is the complex Gabor wavelet, from
which we can derive other complex wavelets. The modulus, the real
and imaginary parts and the phase of the complex Gabor wavelet for
ω = 2 are given in Fig.2.

(a) (b)

Fig. 2. Complex Gabor Wavelet (a) Modulus (b) Phase
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B. Complex First Order filters

In order to implement the complex Gabor wavelet filter, we first
propose an analog filter based on the Complex First Order Systems
(CFOS) [4]. A CFOS is defined by the following set of equations

ẋ(t) = −(σ + jω)x(t) + (cre + jcimag)u(t) (3)

x(t) = xre(t) + jximag(t) (4)

where u is the input signal assumed to be real, x is the state variable
assumed to be complex, σ, ω, cre and cimag are system parameters
assumed also to be real. Without loss of generality we will assume
cre and cimag to be equal to 1. One can map this first order transfer
function onto a state space description. The general expression of the
transfer function corresponding to a state space description is

H(s) = C · (sI −A)−1 ·B +D (5)

The entries of the matrices A, B, C and D are derived directly
from the coefficients of the transfer function. The poles of the transfer
function are the eigenvalues of A. In other words, the denominator
of the transfer function is given by the determinant of sI−A, where
I is the identity matrix. The zeros of the filter are constituted from
the contents of all four system matrices. Considering D = 0, and
applying C · adj(sI −A) ·B, where adj compute the adjoint of the
respective matrix, we can obtain a possible state space description of
Hre and Himag given by

Are,im =

[
−σ ω
−ω −σ

]
Bre,im =

[
0
1

]

Cre =
[

0 1
]

Cim =
[

1 0
]

(6)

Notice that the state space descriptions differ only by the C
matrices. Then, we can represent the CFOS using the following block
diagram, given in Fig.3

Fig. 3. Complex First Order System block diagram using state-space
representation

An imaginary input can be added by just including another B
stage. From this block diagram, one can easily derive the common
CFOS cross-coupled representation in Fig.4

The starting point of the Gabor wavelet design using CFOS is
the definition of the number of stages which defines the appropriate
Gaussian envelope to set the width of the wavelet [4]. Subsequently,
once the Gaussian envelope has been defined, the real and the
imaginary impulse responses are obtained. Applying Eq. 3 and Eq.
4, the complex impulse response of n+ 1 CFOS stages is given by

h(t) = (cre + jcimag)
n+1 t

n

n!
e−(σ+jω)tU−1(t) (7)

From Eq.7 one easily calculates the general transfer function of the
n + 1 CFOS system for the real and the imaginary outputs, which

Fig. 4. Complex First Order System block diagram

are given as follows

Hre(n) =
(s+ σ) ·Hre(n− 1)− ω ·Himag(n− 1)

((s+ σ)2 + ω2)
n−1 (8)

Himag(n) =
(s+ σ) ·Himag(n− 1) + ω ·Hre(n− 1)

((s+ σ)2 + ω2)
n−1 (9)

with

Hre(1) =
(s+ σ)

(s+ σ)2 + ω2
(10)

Himag(1) =
ω

(s+ σ)2 + ω2
(11)

which correspond to the transfer function of the first order complex
filter in Fig.3. Choosing the right values for σ and ω, we can obtain
the imaginary and the real part of the complex Gabor, respectively,
as one can see in Fig.5 for different numbers of stages.

(a) (b)

Fig. 5. Complex Gabor Impulse response (a) Imaginary output (b) Real
output

It must be noted that the Complex Morlet Wavelet can also be
approximated in a similar manner. Again, we need to choose the right
value for ω in order to have the appropriate frequency component for
the Morlet wavelet.

C. Padé Approximation in Laplace domain

In the previous section, an analog complex wavelet transform filter
was proposed, of which the impulse responses are approximated
complex Gaussian window functions. This complex wavelet filter,
subsequently, was implemented with CFOS technique. However, a
more general procedure based on the Padé approximant to obtain
various types of wavelet bases was presented in [5]. Moreover, the
Padé method proves to be more successful than the method using
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CFOS for a filter of the same order which will be shown in this
section.

Just like the Taylor expression, the Padé approximation is an
approximation that concentrates around one point of the function
that needs to be approximated (i.e. the impulse response h(t)) [6].
In the Padé approximation, the coefficients of the approximating
rational expression are computed from the Taylor coefficients in the
Laplace domain of the original function. The reason to apply the Padé
approximation to the Laplace transform of h(t) is, that it immediately
yields a rational expression which is suitable for implementation. A
Padé approximation of function F (s) is given by

F̂ (s) =
P (s)

Q(s)
=
p0 + p1s+ . . .+ pms

m

q0 + q1s+ . . .+ qnsn
(12)

where F̂ (s) is the Taylor series truncated around some point, e.g.
s = 0 and qn = 1 for normalization. If the approximating rational
function has a numerator of order m and a denominator of order n,
the original function can be approximated up to order m + n. The
computation of the coefficients of P (s) and Q(s) has already been
described in [5], [6].

One can first apply the Padé technique to approximate the Gaussian
envelope. We apply a [2/5] Padé approximation, i.e. m = 2 and n =
5, which yields an approximation of order k = 7 of the Taylor series
expansion. The transfer function resulting from this approximation is
given by

Hgaus(s) =
5.7s2 − 18.2s+ 92.416

s5 + 8.3s4 + 33s3 + 74.8s2 + 94.5s+ 52.3
(13)

In order to obtain the transfer function of the real and the imaginary
parts of the Gabor function in Eq.1 one can easily apply

HGabor(s) =
s

s2 + ω2
∗Hgaus(s)− j ω

s2 + ω2
∗Hgaus(s) (14)

where the asterisk ∗ is the symbol for convolution and s
s2+ω2

and ω
s2+ω2 are the Laplace transforms of cos(ωt) and sin(ωt),

respectively. Notice that both transfer functions are related by

HReal(s) = − s
ω
∗HImag(s) (15)

From Eq.15, one can verify that the poles of the real and the
imaginary transfer function are the same, only differing in the zeros.
Therefore, we can implement both transfer functions by changing
only the C-matrix of the state-space representation, as shown in Fig.6.

Fig. 6. Block diagram of the Complex Wavelet system

Using the procedure described in Eq.14, yields tenth order transfer
functions with 7 zeros. Its corresponding impulse responses are given
in Fig.7.

(a)
(b)

Fig. 7. Complex Gabor Impulse response approximation (a) Imaginary output
(b) Real output

In order to compare the Padé approximation with the approxima-
tion using CFOS one can verify the associated Mean-Square Error
for both approximation. The results obtained varying the order of the
filter are illustrated in Table.I, where the real and the imaginary parts
of the complex Gabor wavelet have been approximated, respectively.

order CFOS Padé
n Real Imaginary Real Imaginary
3 0.0444 0.0513 0.0899 0.0927
4 0.0382 0.0380 0.0817 0.0468
5 0.0339 0.0302 0.0454 0.0185
6 0.0308 0.0251 0.0178 6.05e-3
7 0.0284 0.0216 7.75e-3 1.01e-3
8 0.0265 0.0190 2.30e-3 0.040e-3
9 0.0250 0.0170 0.74e-3 0.033e-3
10 0.0238 0.0154 0.13e-3 0.020e-3

TABLE I
ORDER OF THE FILTER VERSUS MEAN-SQUARE ERROR FOR CFOS AND

PADÉ APPROXIMATION

As seen from the Mean-Square Error comparison for n > 5, the
Padé method yields a much better approximation than the method
using CFOS for a filter of the same order. Finally, by only changing
the numerator coefficients of the Eq.14 (i.e. the zeros), we can obtain
the complex Gaussian and the complex Morlet wavelets.

III. CIRCUIT DESIGN

A. Filter design

The filter design that follows is based on an orthonormal ladder
structure , which presents a good behavior with respect to sensitivity
and dynamic range [5], with log-domain integrators as the main
building blocks. A simple bipolar multiple-input low-power log-
domain integrator [7] will be used as the basic building block for
the implementation of the tenth order state space equations of the
Gabor wavelet filter described in the previous section. This log-
domain integrator is shown in Fig.8.

B. Modulus stage

The static translinear principle can be applied to the implemen-
tation of the required nonlinear transfer functions of the modulus
and arctangent stages. First, the required modulus function |z| =
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Fig. 8. (a) The multiple-input low power log-domain integrator, and (b) its
symbol [7]

√
Re2 + Im2 is realized with the circuit in Fig.9(a) [8]. The translin-

ear loops in the circuit consist of transistors Q1, Q7, Q8 and Q4 and
Q6, Q11, Q10 and Q4, implementing

2(Io − Re)(Io + Re) = (
√

2Io − z)(
√

2Io + z + p)

2(Io − Im)(Io + Im) = (
√

2Io − z)(
√

2Io + z − p) (16)

where Io is the bias current and p is a coupling parameter equal
to 2Re2−z2

z−
√

2Io
. Notice that both variables, Re and Im, are bipolar

quantities.

C. Phase information - Arctangent stage

From the complex waveforms shown in Fig.7, we can now obtain
the phase information by simply applying the arctangent to the ratio
between the imaginary and the real outputs. This operation can be
approximated using the translinear principle as [8]

Phase =
Im

0.63Re+
√

0.88Re2 + Im2
' 2

π
arctan(

Im

Re
) (17)

where the square root term is provided by the modulus circuit in
previous section. The division operation can easily be implemented
using the factorization z = x

y
⇒ Io+z

Io−z = y+x
y−x [8] and the schematic

is given in Fig.9(b) [9].

(a) (b)

Fig. 9. (a) Modulus (Vector magnitude) circuit [8] (b) Divider circuit for
the Arctangent stage [9]

IV. SIMULATIONS RESULTS

To validate the circuit principle, we have simulated the filter, the
modulus stage and the phase stage using models of IBM’s 0.18µm
BiCMOS IC technology. The filter has been designed to operate
from a 1.2V supply and a 100pF total capacitance. Fig.10 shows the
impulse response of the real and imaginary outputs of the wavelet
filter. The excellent approximation of the complex Gabor wavelet
can be compared with the ideal Gabor function to confirm the
performance of the filter. Finally, Fig.11 shows the modulus stage
and phase stage outputs, which are close to the ideal cases for the
complex Gabor wavelet in Fig.2.

(a) (b)

Fig. 10. Simulated impulse responses of the complex Gabor wavelet filter
(a) Imaginary output (b) Real output

(a) (b)

Fig. 11. Simulated complex Gabor wavelet filter (a) Modulus and (b) Phase
responses

V. CONCLUSIONS

An analog implementation of the complex wavelet transform was
presented. The procedure was based on either CFOS or the Padé
approximation . The complex wavelet filter design was derived
from the combination of the real and the imaginary state-space
descriptions. By this, we were able to implement a complex filter, i.e.
both real and imaginary transfer functions, with just an extra C matrix
into an ordinary state-space structure. Several complex wavelets have
been obtained and simulations demonstrated excellent approximations
to the ideal wavelets.
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