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ABSTRACT

A novel procedure to approximate Wavelet bases using analog cir-
cuitry is presented. First, an approximation is introduced to cal-
culate the transfer function of the filter, whose impulse response
is the required Wavelet. Next, for low-power low-voltage applica-
tions, we optimize dynamic range, minimize sensitivity and fulfill
sparsity requirements. The filter design that follows is based on an
orthonormal ladder structure with log-domain integrators as main
building blocks. Simulations demonstrate an excellent approxima-
tion of the required Wavelet base (i.e. Morlet). The circuit operates
from a 1.2-V supply and a bias current of 1.2µA.

Keywords - Wavelet transform, log-domain filters, orthonor-
mal ladder, analog electronics

1. INTRODUCTION

For signal processing, the Wavelet Transform (WT) has been shown
to be a very promising mathematical tool, particularly for local
analysis of nonstationary and fast transient signals, due to its good
estimation of time and frequency localizations. The Wavelet anal-
ysis is performed using a prototype function called Wavelet base,
which decomposes a signal into components appearing at differ-
ent scales (or resolutions). Often systems employing the WT are
implemented using Digital Signal Processing (DSP). However, in
ultra low-power applications such as biomedical implantable de-
vices, it is not suitable to implement the WT by means of digital
circuitry due to the high power consumption associated with the re-
quired A/D converter. In [1] we proposed a method for implement-
ing the WT in an analog way. However, besides the derivatives of
the gaussian wavelet presented in [1], there are several families of
wavelets that have proven to be especially useful [2]. Therefore, a
more general procedure to obtain various types of Wavelet bases,
is presented in this paper.

Section 2 deals with the computation of a transfer function,
which describes a certain Wavelet base that can be implemented
as an analog filter. Next, Section 3 describes the complete filter
design, taking into account the requirements for low-power low-
voltage applications. Some results provided by simulations are
given in Section 4. Finally, Section 5 presents the conclusions.

2. WAVELET BASES APPROXIMATION

The flowchart as seen in Fig.1, describes a procedure which gener-
ates a transfer function of a wavelet base. The goal of this approach
is to be able to reduce the order of the filter without really affecting
the approximation of its impulse response. The starting point is the

definition of a expression in the time domain which represents the
wavelet under investigation. If the wavelet base does not have an
explicit expression (e.g., Daubechies wavelets), then the splines
interpolation method is used. Subsequently, one determines the
appropriate envelope to set the width of the wavelet. Once again,
if the envelope does not have an explicit expression, the splines in-
terpolation is applied. In this paper, the Gaussian pulse was chosen
as the envelope, which is perfectly local in both time and frequency
domains. Once the envelope has been defined, the Padé approxi-
mation is executed to find a stable and rational transfer function
which is suitable for implementation as an analog filter. The main
advantage of the Padé method is its computational simplicity and
its general applicability [3]. Therefore, it can easily be applied to
other envelopes as well. The Padé approximation is preceded by
a two step procedure. First, a Laplace transform is executed and
then a Taylor expansion is performed on the expression of the en-
velope in the Laplace domain. Finally, the wavelet is decomposed
into a Fourier series to find the dominant term (the term with the
largest coefficient) such that when multiplied with the envelope in
the time domain, it results in the approximated wavelet base. The
results obtained from the use of this method are illustrated in Fig.
2, where the Morlet and the Daubechies5 (db5) Wavelet bases have
been approximated, respectively. Other wavelet bases can also be
approximated in a similar manner. The rest of the discussion in this
paper shall relate to the design of a Morlet Wavelet filter. In the
next section we will map the transfer function onto a state space
description that is suitable for low-power implementation.

3. FILTER DESIGN

There are many possible state space descriptions for a circuit that
implements a certain transfer function. The same holds for prac-
tical realizations. This yields the possibility to find a circuit that
fits to the specific requirements of the designer. In the context of
low-power, low-voltage analogue integrated circuits, the most im-
portant requirements are the dynamic range, the sensitivity and the
sparsity, all of which will be treated in the subsections that follow.
Moreover, we focus on a synthesis technique, exclusively based on
integrators.

3.1. Dynamic Range

A system’s dynamic range is essentially determined by the max-
imum processable signal magnitude and the internally generated
noise. It is well known that the system’s controllability and ob-
servability gramians play a key role in the determination and opti-
mization of the dynamic range. The controllability (K) and observ-
ability (W) gramians are derived from the state space description
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Fig. 1. Flowchart of the Wavelet filters approach

and are computed by solving the equivalent Lyapunov equations

AK + KAT + 2πBBT = 0 (1)

AT W + WA + 2πCT C = 0 (2)

Where A, B and C are the state, input and output matrices of
the state-space description, respectively. The entries of A, B and
C are derived directly from the coefficients of the transfer func-
tion. Optimization of the dynamic range is equivalent to the si-
multaneous maximization of the (distortionless) output swing and
the minimization of the overall noise contribution. The maximum
output swing is maximized when the controllability gramian is a
diagonal matrix with equal diagonal entries (state scaling). For
the minimization of the noise, the observability gramian should
become a diagonal matrix as well.

In [4] it is shown that, in order to maximize the dynamic range
of the system, one should minimize the objective functional, which
represents the relative improvement of the dynamic range and con-
tains all parameters which are subject to manipulation by the de-
signer. The objective functional is given by

FDR =
maxikii

(2π)2

X
i

αi

Ci
wii (3)

where kii and wii are the main diagonal elements of K and W
respectively, αi =

P
j |Aij | is the absolute sum of the elements

on the i-th row of A and Ci is the capacitance in integrator i.
Finally, the optimal capacitance distribution is matched to the

noise contributions of each individual integrator (noise scaling),
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Fig. 2. Impulse response of the Wavelet filters, the ideal impulse
(dashed line) and the approximated impulse (solid line),(a) Gaus-
sian envelope, (b) Morlet and (c) db5 wavelet base; (d) Transfer
function of the Morlet Wavelet filer

i.e, the diagonal entries of W , combined with the coefficients in
matrix A, and is defined by [4]

Ci =

√
αiwiikiiP

j

p
αjwjjkjj

(4)

Applying the optimization method described in [4] for the
transfer function given in Section 2, we have FDR equal to 96.98
which is the absolute minimum value of the objective functional.

3.2. Sparsity

The drawback of a dynamic-range-optimal system is that the state-
space matrices is generally fully dense, i.e all the entries of the
A, B, C matrices are filled with nonzero elements. These coeffi-
cients will have to be mapped onto circuit components, and will re-
sult in a complex circuit with a large number of interconnections.
For high-order filters it is therefore necessary to investigate how
a realization of the desired transfer function having sparser state-
space matrices would compare to the one having maximal dynamic
range. For a less complex circuit, it is possible, for instance, to re-
duce A to upper triangular by a Schur decomposition, and by this
reducing the number of non-zero coefficients in A [4]. However
this transformation leads to an increase in the system noise and
consequently to an increase in the objective functional in (3). An-
other possibility is the Orthonormal Ladder structure [5], which is
significantly sparser than the fully dense A matrix of the dynamic-
range-optimal system and the Schur decomposition. The advan-
tage of using this structure is its low sensitivity to coefficient (and
thus component) mismatch and it will be described in the next sec-
tion.
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3.3. Orthonormal Ladder Structure

Synthesis of analog filters can be achieved in many different ways.
However, it is very desirable for the design of high-order filters
to concentrate on circuits that give lower sensitivity to component
variations. It is known that an optimal dynamic range system will
also be optimal with respect to sensitivity. Nevertheless, in or-
der to improve the state-space matrices’ sparsity, an orthonormal
ladder structure will be implemented which still presents a good
behavior with respect to sensitivity. Fig.3 shows a block diagram
of a general orthonormal ladder filter [5]. As shown in the block
diagram, the filter output y is obtained from a linear combination
of the outputs of all integrators xi.
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Fig. 3. Block diagram of an orthonormal ladder filter, (a) Leapfrog
structure; (b) Output summing stage

The A, B and C matrices of this structure for the defined trans-
fer function is given by

A =

26666664

0 6.54 0 0 0 0 0 0 0 0
−6.54 0 1.83 0 0 0 0 0 0 0

0 −1.83 0 6.59 0 0 0 0 0 0
0 0 −6.59 0 2.72 0 0 0 0 0
0 0 0 −2.72 0 6.37 0 0 0 0
0 0 0 0 −6.37 0 3.89 0 0 0
0 0 0 0 0 −3.89 0 6.27 0 0
0 0 0 0 0 0 −6.27 0 5.88 0
0 0 0 0 0 0 0 −5.88 0 10.47
0 0 0 0 0 0 0 0 −10.47 −13.31

37777775

B =

266664
0
0
0
0
0
0
0
0
0

2.05

377775
C = [ 0.75 −1.34 0.75 0.68 −0.57 0.44 −0.002 −0.10 0.04 0 ]

(5)

The A matrix is tridiagonal and is very nearly skew-symmetric
except for a single nonzero diagonal element. The B vector con-
sists of all zeros except for the Nth element. Another property
of orthonormal ladder filters is the fact that the resulting circuits
are inherently state scaled, i.e., the controllability gramian is al-
ready a identity matrix. The drawback of this structure is that
the system is not optimized with respect to its noise contribu-
tion. However, if an optimal capacitance distribution is applied
to this suboptimal system, we still can get some extra gain com-
pared to the case of equal capacitances. Then, the objective func-
tional becomes in that case, FDR = 147.90 which is not so far
from the optimum case. The Dynamic Range has decreased by
only 1.83dB. Finally, the normalized capacitance distribution is
given by (C1, ..., C10) = C′(0.142, 0.162, 0.110,0.117, 0.086, 0.091,

0.073, 0.080, 0.073, 0.061) , where C′ represents the unit-less value
of the total capacitance when expressed in F.

3.4. Low-power log-domain integrator

The trend toward lower power consumption, lower supply volt-
age and higher frequency operation has increased the interest of
new design techniques for analogue integrated filters. The class
of translinear (TL) filters, also known as log-domain filters, has
emerged in recent years as a promising approach to face these
challenges. The translinear approach is inherently companding
and exploits the exponential large-signal transfer function of the
semiconductor devices to implement a desired linear or nonlinear
differential equation. A simple bipolar multiple-input low-power
log-domain integrator [6] will be used as the basic building block
for the implementation of the state space equation of a wavelet
filter described in previous section. This log-domain integrator is
shown in Fig.4. A pair of log-domain cells with opposite polarities
and an integrating capacitor form the core of the integrator. Vip and
Vin are the noninverting and inverting input voltages, respectively,
and the input currents are Iip and Iin, which are superimposed on
the dc bias currents. The output voltage Vout is given by the volt-
age across the capacitor. The circuit is composed of two identical
log-domains cells, a voltage buffer and a current mirror. The log-
domain cells Q1-Q2 and Q3-Q4 generate the log-domain currents
Ic2 and Ic4, respectively. A voltage buffer realized by Q5-Q6 is
inserted between them. Therefore, the output log-domain voltage
Vo at the emitter of Q2 also appears at the emitter of Q4. Finally, to
achieve a log-domain integrator equation, a current mirror Q7-Q8

is employed in order to realize, in conjunction with the buffer, the
difference of the two log-domain currents on the capacitor node.
The connection from the bases of transistors Q7 and Q8 to the
collector of Q4 closes the feedback loop around Q4 and Q7. This
connection is convenient because it ensures minimizing the overall
voltage headroom. The equation that relates the input and output
voltages to the current flowing in the integrating capacitor becomes

Ci
dVout

dt
= (Io + Iip)e

Vip−Vout
VT − (Io + Iin)e

Vin−Vout
VT (6)
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Fig. 4. (a) The multiple-input low power log-domain integrator,
and (b) its symbol

Notice that the input and output voltages of the integrator are
at the same dc level. Therefore the filter synthesis can be easily
achieved by directly coupling these integrators.
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3.5. Synthesis of the log-domain state-space filter

By applying a simple mapping to the linear state-space equations
(5), the corresponding log-domain circuit realizations can be ob-
tained, using the log-domain integrator cell introduced in the pre-
vious section.

The block diagram of the log-domain implementation of (5)
is illustrated in Fig.5 using the universal log-domain cell symbol
described in [7] and shown in Fig.4b. Note that each column of
the filter structure corresponds to a row in the state-space formu-
lation. The parameter Aij is implemented by the corresponding
log-domain integrator with bias current IAij , defined by a current
matrix AI

AI = VT Ci · A (7)

The input section, as governed by the state-space vector B,
can be defined as the input LOG operator and is realized by the
first row from the top of Fig.5. The parameter B is related to the
current by

B =
Io

VT Ci
(8)

Consequently, the B coefficients are not individually control-
lable by bias currents, and they have to be set equal (or zero). For-
tunately, this is the case in (5), where only one non-zero parameter
of the B vector is present, and then it is not necessary to transpose
the state-space system. Finally, the weighted summation state with
the corresponding EXP operators, in order to restore the overall
system linearity, should be realized. Then the bias current vector
CI , which controls the vector C, is defined as

CI = Io · C (9)
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Fig. 5. Complete State-space filter structure

4. SIMULATION RESULTS

To validate the circuit principle, the log-domain state-space filter
has been simulated using models of our in-house bipolar semi-
custom IC process SIC3A. Typical transistor parameters are fT,max

= 15GHz and βF,npn = 150 (smallest emitter size). The circuit has
been designed to operate from a 1.2V supply and a 100pF total ca-
pacitance. Fig.6 shows the impulse response of the wavelet filter.

The total filter’s current consumption is 1.2µA. The output current
presents an offset of approximately 180pA.
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Fig. 6. Simulated impulse response

The excellent approximation of the Morlet can be compared
with the ideal Morlet function in Fig.6 to confirm the performance
of the log-domain filter.

5. CONCLUSIONS

A novel procedure to approximate Wavelet bases using analog cir-
cuitry was presented. Simulations demonstrated an excellent ap-
proximation of the Morlet Wavelet base. The circuit operates from
a 1.2-V supply and a bias current of 1.2µA. The filter was opti-
mized with respect to dynamic range. Moreover, sensitivity and
sparsity were also taken into account when designing the filter.
Hence, the filter was able to meet the requirements imposed by a
low-power environment. With the results obtained, we deduce that
this procedure could very well be used to approximate also other
Wavelet bases.
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