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ABSTRACT

This paper presents an analog implementation of the Wavelet
transform (WT) in an ultra low power environment, using the

dynamic translinear (DTL) circuit technique. The circuit consists 

of an analog filter whose impulse response is the first derivative

of a Gaussian. A convenient method to provide the transfer

function of the filter is given by the Padé approximation. In

order to fulfill the low-power requirement, the filter’s state space 
description is optimized with respect to dynamic range. Finally,

the DTL principle is applied to implement the state space filter.

Simulations indicate a good approximation of the Wavelet

Transform.

Keywords – Wavelet transform, dynamic translinear circuits,
ECG characterization, analog electronics, Padé approximation.

1.  INTRODUCTION

This paper presents an analog implementation of the wavelet

transform with a Gaussian wavelet in an ultra low power

environment, using the dynamic translinear circuit technique.

The wavelet transform is a merited technique for analysis of
non-stationary signals, like cardiac signals. Being a multiscale

analysis technique, it offers the possibility of selective noise

filtering and reliable parameter estimation. Monitoring and
recording in current cardiology practice, which is in vitro,

employs the discrete wavelet transform, implemented in a digital 

signal processor. Low power analog realization of the continuous 

wavelet transform enables its application in vivo, e.g.

pacemakers and IECG recorders. In these applications, the

wavelet transform provides a means to extremely reliable QRS-

detection and efficient data storage [1].

The first step of the implementation is the approximation of 

the ideal transfer function of the filter, the Laplace transform of

the gaussian wavelet, by a fifth order rational transfer function,
using the Padé approximation. The resulting wavelet has a time-

frequency resolution which is better than that of an alternative

fifth order approximation [2] and close to the theoretical
minimum of ½. Second, the filter's state space description is

optimized with respect to dynamic range, using the method

proposed by Rocha [3]. Compared to a straightforward

implementation, the dynamic range of the optimized state space
description has increased by approximately 20 dB. Finally, the

individual wavelet transform scales have been implemented,

using a hierarchically structured dynamic translinear circuit,

following the synthesis method proposed by Roberts [4].

Section 2 deals with the Padé approximation to find the

transfer function, which describes the filter. In Section 3, the

optimization procedure is applied. Next, Section 4 describes the

circuit design. Some results provided by simulations are shown
in Section 5. Finally, Section 6 presents the conclusions.

2.  APPROXIMATION OF THE MOTHER 

WAVELET

2.1. Choice of the mother wavelet

The continuous time wavelet transform (WT) of a signal ( )x t  is 

described as:

( ) ( )1
,x

t
a x t dt

aa

ττ ψ
∞ ∗

−∞

−⎛ ⎞Ψ = ⎜ ⎟⎝ ⎠∫ .    (1)

( )tψ  is called the ‘template’ of the WT or also the ‘mother

wavelet’. In general, the wavelet transform can be applied using
a wide variety of mother wavelets. In many biomedical research 

applications, the first order derivative of the Gaussian function is 

a favorite mother wavelet [1]: 

( )224( ) 2 expt t tπψ = − ⋅ ⋅ −    (2)

There are two reasons for the use of the Gaussian wavelet.

The main reason is that the product of its time resolution and its

frequency resolution takes the theoretical minimum value of  ½ 

[5]. Consequently, a wavelet transform with the gaussian

wavelet gives the most accurate estimation of frequency

components localized in time [6]. The second reason can be seen 
from detection theory. A certain waveform in a signal with

additive gaussian white noise will be detected optimally if the

impulse response of the filter is the time-reverse of that

waveform [7]. Applying this to the case of ECG analysis, we
denote some similarity between the contents of the ECG,

particularly the QRS complex, and the gaussian wavelet.

Therefore the first order derivative of the gaussian function is a
good approximation to the ‘matched’ filter. 

2.2.  Padé Approximant

The Padé approximation is an approximation that concentrates

around one point of the function that needs to be approximated.

The reason to apply the Padé approximation is that it

immediately yields a rational expression, which is suitable for
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implementation. In the Padé approximation, the coefficients of

the approximating rational expression are computed from the

Taylor coefficients of the Laplace Transform of ( )tψ .

Suppose we have the truncated Taylor series expansion of a 

general function F(s) around some point, e.g., 0s = :

( ) ( )1

0 1

k k

kF s c c s c s O s += + + + +�    (3)

The constants 0c  to kc  are called the Taylor coefficients.

Unfortunately, F(s) is not a suitable expression to build a filter,

since it has only zeros.  Then, the Padé approximation ( )F̂ s of

a function ( )F s  is given by:

( ) ( )
( )

0 1
[ / ]
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+ + +
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�
   (4)

where the coefficients of ( )Q s  are:
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with 1nq = . The coefficients of ( )P s  are:
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with 0kc =  for 0k < .

Then, if the approximation rational function has a

numerator of order m  and a denominator of order n , the

original function can be approximated up to order m n+ .

The main advantage of the Padé approximation is its

computational simplicity and its general applicability. Therefore, 

it can easily be applied to other filters with a prescribed impulse 

response, for example to build WT filters with alternative mother 
wavelets.

On the basis of the time-frequency resolution product, we

think that the [3/5] Padé approximation is a suitable candidate
for implementation. It is almost symmetrical, it has almost no

overshoot and its time-frequency resolution product is only 5%

above the Heisenberg limit of 1
2 , while its order 5, is

reasonable. We conclude the section by giving the transfer

function of this approximation, which will be the basis for
implementation in the next section:

[ ] ( )
2 3

, 3 / 5 2 3 4 5

92.4 18.3 5.75ˆ
52.3 94.5 74.8 33.0 8.33

a

s s s
H s

s s s s s

− +=
+ + + + +

   (7)

3.  DYNAMIC RANGE OPTIMIZATION

Departing from the transfer function derived in Section 2, we

generate a state space description of the filter, which is

optimized with respect to the Dynamic Range. In [3] a method to 

optimize the state space description of a dynamical system is

presented, based on the observability and controllability

gramians. The resulting system has, under certain conditions, the 

maximum dynamic range which is achievable, given the total

amount of capacitance. We shall follow his approach and apply
the method to our filter. 

The common form of the state space description is:

( ) ( ) ( )

( ) ( ) ( )

d
x t Ax t Bu t

dt

y t Cx t Du t

= +

= +
                   (8)

The input and output signals of the system are ( )u t  and

( )y t , respectively. The vector variable ( )x t  represents the

state of the system. The entries of A , B , C  and D  are

derived directly from the coefficients of the transfer function. 

The controllability and observability gramians are derived

from the state space description. The definition of the

controllability gramian is, related to the system matrices A  and

B :

0

TAt T A tK e BB e dt
∞

= ∫    (9)

The observability gramian is, related to the system matrices A
and C :

0

TA t T AtW e C Ce dt
∞

= ∫                  (10)

In practice, both gramians are computed by solving a

Lyapunov matrix equation. 

Finally, we will give the objective functional that will be

used to evaluate the gain in dynamic range. Under the
assumption that all noise sources in the circuit can be

transformed to the integrator inputs and that the equivalent noise 

sources at the integrator inputs have the same level for all
integrators, the absolute dynamic range is expressed as [3] :

( ) ( )
2

1

max ii ii
iii

i

M
Tr KQ

p
DR

k
w

C

δ
αγ

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠=

∑
                         (11)

where M  is the maximum integrator representation capacity

(clipping level), ( )pδ  is a nonlinear function relating

undesirable high signal levels at the integrators to the chance p

that these signal levels occur, Q  is called the state weighting

matrix and is defined
TQ C C= , ( )Tr i  is the trace operator

(sum of main diagonal elements), iik  and iiw  are the main

diagonal elements of K  and W  respectively, i ijj
Aα = ∑  is

the absolute sum of the elements on the i-th row of A , iC  is the 

capacitance accommodated in integrator i  and, finally, γ  is a

constant representing the integrator noise figure.

Although (11) seems an impressive expression for

maximization, it can be shown that M , ( )pδ , ( )Tr KQ  and

γ  are invariant to similarity transforms. In this paper we are

only concerned with the relative improvement of our
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optimization procedure, so we will use the following objective

functional, according to [3], which will be minimized:

max i
DR i ii iii

i

F k w
C

α
= ∑                  (12)

Hence, in order to maximize the dynamic range of the

system, one should minimize the objective functional. 
As the dynamic range of a circuit is defined as the ratio

between the maximum and the minimum signal level that it can

process, optimization of the dynamic range is equivalent to the

simultaneous maximization of the (distortion-less) output swing

and the minimization of the overall noise contribution. In [3],

Rocha gives a geometric interpretation of the optimization of the 

dynamic range. He relates the output swing via the

controllability gramian to the space of 'occurring' state space

vectors. Under the assumption of a random input signal, the

shape of this space generally is a multidimensional ellipsoid. The 
constraint that each integrator has a maximum representation

capacity defines a multidimensional cuboid, which, for a

distortionless transfer, should contain the former mentioned
ellipsoid completely. As the mean radius of the ellipsoid is

equivalent to the maximum output swing, the output swing is

maximized when the mean radius of the ellipsoid is maximal.

This occurs if and only if the ellipsoid becomes a spheroid. In
that case the controllability gramian is a diagonal matrix with

equal diagonal entries, which means that all axes of the ellipsoid 

have equal length. Thus, the first optimization step boils down to 

a similarity transform, such that the controllability gramian of

the new system becomes a diagonal matrix with equal diagonal

entries.
In the second step of the optimization procedure, the system 

is optimized with respect to its noise contribution. Rocha defines 

another ellipsoid, which describes the noise that is added to the

state vector in each direction. While preserving the result of the
first optimization step, it is possible to rotate the state space,

such that the observability gramian becomes a diagonal matrix as 

well. In that case, the axes of the noise ellipsoid are aligned with 
the 'system axes'. Profiting from the well-known fact that the

relative noise contribution of an integrator decreases when the

capacitance and bias current increase, the capacitance
distribution can be matched now to each integrator's noise

production. Thus, the optimum capacitance distribution is given

by [3]: 

i ii ii

i

j jj jjj

w k
C

w k

α
α

=
∑

                 (13)

Finally, compared to a straightforward implementation (e.g. 

a cascade of biquads), we can reach a maximum gain in

Dynamic Range of 19.6dB by optimization. However, the state-
space matrices of the dynamic-range-optimal system is generally 

fully dense and due the complexity of its implementation, we

sometimes have to trade off between a less complex
implementation and a better dynamic range. For our filter, we

opt for the fully optimized state space description.

4.  CIRCUIT DESIGN

4.1. Multiple input log-domain integrator

First, the log-domain integrator, which is the basic building

block of the filter, will be presented. The multiple input log-

domain integrator is shown in Fig.1. The operation of the circuit 

is as follows. A positive voltage across the base-emitter junction 

of Q1 causes a collector current, which discharges the

capacitance through the collector-base connection. A positive

voltage across the base-emitter junction of Q2 causes a collector 

current, which charges the capacitance via the current mirror on
top. The net current flowing into the capacitance is the difference 

of collector currents from the positive and negative input side. In 

addition, we implement the state space coefficients (aij or bi), by

placing constant voltage sources, Vmp and Vmn, in series with
each base-emitter junction. Finally, we propose to subtract a

constant number α of each exp( ) term in order to perform the

integration operation for both positive and negative input

variables. This is implemented by the transistors Q3 and Q4 and 

the constant voltages sources Vbp and Vbn, respectively. An

alternative view on subtracting a constant number is defining the 
operating point. This is basically the same as biasing. However,

in contrast to the regular design of linear circuits, we cannot

separate the design of the signal processing function and the
design of the bias function. Since the circuit is nonlinear and

intended to be used in the large signal range, the superposition

principle is not valid. Therefore, the biasing function is an
integrated part of the signal processing design.

Thus, the current flowing into the capacitance is defined as:

e e

C mp ip C bpC mn in C bn

t tt t

V V V V VV V V V V

V VV VC
C S S S S

dV
i C I I I e I e

dt

+ − +⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ − +
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠= = − + −

                 (14)
with

,

,
ln

ij j

mp m n t

s

a b
V V

I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                 (15)

, ,bp bn m p m nV Vα= ⋅                  (16)

where aij , bj  are the multiplication coefficients of the matrix A
or matrix B in the state space description. Vmp,mn are the positive 

and negative multiplication voltages respectively. Vbp,bn are the

positive and negative voltages which implement the biasing

function. Is is the saturation current.
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             Fig. 1. Log-domain integrator

4.2. Log-domain realization of the state space

description

In this subsection, we will design the circuit implementing our

wavelet filter, based on the multiple input log-domain integrator. 

A block schematic of the total filter is drawn in Fig. 2. The A-

matrix, B-matrix and C-matrix each have five connections to the 

capacitances.

Let us start with writing each row of (8) separately
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5
1

1

5

1

i ij j i

j

i i

i

d
x a x b u

dt

y c x

τ −

=

=

= +

=

∑

∑
                 (17)

B-matrix C-matrix

A-matrix

C1 C2 C3 C4 C5

Iu
Iy

Fig. 2. Block diagram of the complete system

Notice that we introduce the constant τ (τ  = CVt ), which

represents the time constant of the circuit. We define the five

states 1x  to 5x  with an exponential relation to the capacitance

voltages 1CV  to 5CV . The input signal u  and output signal y

are linearly related to the currents uI  and yI . So the

correspondence relation is defined as:

: 0 : 0

5

1

e e e e

e

ci j ci j ci ci

t t t t

ij ij

ci

t

V V V V V V

V V V V

ci ij ij ij i t u

j a j a j

V

V

y i

i

i a a a bCVI

I c α

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

> <

⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

=

=− + + −

⎛ ⎞
⎜ ⎟= −
⎜ ⎟⎝ ⎠

∑ ∑ ∑

∑
    (18)

We see that the terms of the capacitance current have

exactly the same form as the multiple input log domain

integrator expression (14) and thus can be implemented in the

same way. However, in order to maintain the overall linearity of 

a log-domain system, a LOG stage must be added to the input,

while an EXP stage is required at the output. The LOG and EXP

stages are shown in Fig.3. By adding a summation stage at the
output, we can obtain the expression for output current. 
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             Fig. 3. (a) LOG stage  (b) EXP stage

The nullors can be implemented by a cascade of a common-

collector and a common-emitter stage, or, in case of a BiCMOS 

process, a single common-source stage.

5.  SIMULATION RESULTS

To validate the system principle and to check the circuit
performance, the whole system has been simulated using models 

of our in-house bipolar semi-custom IC process, SIC3A [8].

Typical transistor parameters are fT,npn,max = 15GHz and βF,npn =

150 (smallest emitter size).  The circuit has been designed to
operate from a 2-V supply voltage.

First, we have set α = 1 and τ = 1ms. The impulse response 

of the circuit was simulated by applying an input pulse

waveform of length 0.1µs and of height 1nA. The acquired

output signal is plotted in Fig. 4. The output current presents an

offset of approximately 80pA. For illustration we have added the 

plots of the mathematical impulse response of the original state

space filter and the delayed first derivative of the Gaussian.
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Fig. 4. Simulated Impulse response of the filter

As we can see in Fig. 4, the simulated impulse response

differs only slightly from the approximated response, which was 

acquired directly from the, Padé approximation. We conclude
that the coefficients have been implemented successfully.

6.  CONCLUSIONS

Our conclusions are threefold: first, Padé approximation in the

Laplace domain is an efficient and convenient means to

approximate the transfer function of an impulse response
specified filter; second, the acquired fifth order approximated

gaussian wavelet yields a more accurate wavelet transform;

third, dynamic range optimization of a dynamic translinear

circuit implementation minimizes the required power
consumption of the continuous wavelet transform and makes in

vivo cardiac applications possible.
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