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ABSTRACT

In this paper, an analog implementation of the Wavelet 

Transform (WT) is presented. The circuit is based on the 

Dynamic Translinear (DTL) circuit technique and

implements, by means of cascade connected complex first 

order systems, an analog filter whose impulse response is 

a Gabor function, a function most widely used for

frequency analysis among wavelet functions. From

simulations, it is demonstrated that we can scale and shift 

in time and frequency by simply controlling the

capacitance or the control current values. The main 

advantage of this DTL implementation is its low-power

consumption. The circuit operates from 1-V supply

voltage and a bias current of 1µA.

Keywords – Wavelet transform, Gabor transform,
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1. INTRODUCTION

For cardiac signal characterization, the Wavelet

Transform (WT) has been shown to be a very promising 

mathematical tool [1]. WT is efficient for local analysis of 

nonstationary and fast transient signals due to its good 

estimation of time and frequency localizations. It provides 

an alternative to the classical Short-Time Fourier

Transform or Gabor Transform. It decomposes a signal 

into components appearing at different scales (or

resolutions) [2], using short windows at high frequencies 

and long windows at low frequencies. As a result, in ECG 

characterization, wavelet analysis has been used, for

instance, to accurately detect the location of the QRS 

complex, for timing interval measurements, thus

evaluating Arrhythmias, and to calculate the entropy of 

the signal (wavelet time entropy) to detect Myocardial 

Ischemia.

Unfortunately, for pacemaker applications, it is not 

favourable to implement the WT by means of digital 

signal processing because of the high power consumption 

associated with the required A/D converter. 

Because of this constraint, we propose a method for 

implementing the WT in an analog way by means of

dynamic translinear circuits. 

Section 2 treats the basic theory of the Wavelet

Transform. Next, Section 3 provides an overview of the 

static translinear (STL) and dynamic translinear (DTL) 

principles. The circuit design is described in Section 4. 

Some results provided by simulations are shown in

Section 5. Finally, Section 6 presents the conclusions.

2. WAVELET TRANSFORM

Wavelet analysis is a new and promising set of tools and 

techniques for analyzing non-stationary and fast transient 

signals. One major advantage afforded by wavelets is the 

ability to perform local analysis. 

The Wavelet Transform is a linear operation that

decomposes a signal into components that appear at

different scales (or resolutions). The transform is based on 

the convolution of the signal with a dilated filter, thereby 

mapping the signal onto a two-dimensional function of 

time and frequency. 

The main idea of the WT is to look at a signal at 

various windows and analyze it with various resolutions.

It provides an alternative to the classical Short-Time

Fourier Transform (STFT) or Gabor Transform – Gabor 

introduced windowed complex sinusoids as basic

functions. In contrast to the STFT, which uses a single

analysis window, the WT uses short windows at high 

frequencies and long windows at low frequencies. Thus, 

the WT is a so-called constant-Q analysis. The Wavelet 

analysis is performed using a prototype function called 

mother wavelet, ψ(t) (ψ(t) ∈ L
2
,  L

2
 denoting the Hilbert 

space of measurable, square-integrable, one-dimensional

functions). The main characteristic of the mother wavelet 

is given by
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This means that it is oscillatory and has zero-mean

value. Also, this function needs to satisfy the admissibility

condition so that the original signal can be reconstructed 

by the inverse wavelet transform
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The admissible condition implies that the Fourier 

transform of the wavelet must have a zero component at 

the zero frequency. Hence, the wavelets are inherently 

band-pass filters in the Fourier domain.

“Any function that has finite energy and is square 
integrable and satisfies the wavelets admissible condition 
can be a wavelet” [2].

However, the time-frequency (or time-scale) joint 

representation has an intrinsic limitation: the product of 

the resolution in time and in frequency is limited by the 

uncertainty principle (Heisenberg inequality)

2

1≥∆∆ ωt                  (3)

Hence, one can only trade time resolution for

frequency resolution, or vice versa. Gaussian windows are 

therefore often used since they meet the bound with 

equality (minimum time-bandwidth product).

The wavelet transform of a function )(tf at the scale 

a and position τ is given by: 
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The factor a/1  is used for energy normalization. 

The Wavelet transform depends upon two parameters, 

being scale a and position τ. For smaller values of a, the

wavelet transform is contracted in the time domain and 

gives information about the finer details of the signal. 

Then, the wavelet becomes more sensitive to high

frequency components of the signal. For larger values of 

the scale a the wavelet is expanded and gives a global 

view of the signal.

Obviously, the WT is highly redundant when the

parameters (a,τ) are continuous. The scale parameter can 

be sampled along the dyadic sequence (2
j
)j∈Z,., i.e., a=2

j
.

By imposing that

∑
∞
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we insure that the whole frequency axis is covered by a 

dilation of )(ˆ ωΨ  by the scales factors (2
j
)j∈Z.

In many biomedical implantable or injectable

applications, the combination of A/D conversion and

digital signal processing cannot be done at sufficiently

low power consumption. We thus look for an analog

implementation of the WT. Moreover, we look for a 

technique that can be implemented without the need for 

resistors, since these will become too large at very low 

current levels. A promising technique, as will be presented 

below, is the one of dynamic translinear circuits.

3. STATIC AND DYNAMIC TRANSLINEAR
PRINCIPLE

Translinear (TL) circuits are based on the exponential 

relation between voltage and current, characteristic for the 

bipolar transistor and the MOS transistor in the weak 

inversion region. They can be divided into Static (STL) 

and Dynamic Translinear (DTL) circuits. 

The STL circuits are implemented to realize any static 

transfer function.  Their principle applies to loops of

semiconductor junctions. A TL loop is characterized by an 

even number of junctions. The number of devices with a 

clockwise orientation equals the number of

counterclockwise oriented devices. An example of a four-

transistor TL loop is shown in Fig. 1 [3]. The STL

principle states that this circuit can be best described in 

terms of the collector currents I1 through I4. The

translinear loop is thus described by a simple equation in 

terms of products of currents

4231
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Fig. 1. A four-transistor translinear loop.

Linear or nonlinear dynamic (i.e., frequency-

dependent) functions (differential equations) can be

implemented by DTL circuits. The DTL principle is

shown in the sub-circuit in Fig. 2 [4]. This circuit is 

described in terms of the collector current IC and the 

current Icap flowing through the capacitance C. Note that 

the dc voltage source Vconst does not affect Icap. The

collector current of a bipolar transistor is based on the 

exponential law and is  described by:

TBE UV
sC eII /=                  (7)

constV

capV

capI

+

+ −

−

CI

+

−BEV

C

Fig. 2. Principle of dynamic translinear circuits

An expression for Icap can be derived from the time 

derivative of the collector current and yields

CcapCT IIICU =&                  (8)
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where the dot represents differentiation with respect to 

time.

This expression defines the principle of dynamic 

translinear circuits: “A time derivative of a current is
equivalent to a product of currents.”

However, the DTL principle is not limited to the

realization of linear differential equations, e.g., filters, and 

thus it can also be used to implement non-linear

differential equations, e.g., oscillators [5] and RMS-DC

converters [6].

4. CIRCUIT DESIGN

We will now apply the DTL circuit technique to the

design of an analog implementation of the WT. 

We first propose an analog Gabor transform filter, of 

which the impulse response is an approximated Gaussian 

window function. This analog Gabor Transform filter is 

implemented with Complex First Order Systems (CFOS) 

[7]. A CFOS is defined by the following set of equations:

)()()()()( tujcctxjtx iro +++= ωσ&    (9)

)()()( tjxtxtx ir +=                              (10)

where u is an input signal assumed to be real, x is a state 

variable assumed to be complex, σo, ω, cr and ci are

system parameters assumed  to be non-positive, positive, 

real and real, respectively.

After substitution of Eq. (10) into Eq. (9), the real and 

imaginary part of x, xr and xi, can be described by

ucxxx riror +−= ωσ&  (11)

ucxxx irioi ++= ωσ&                (12)

Next, this set of two real first-order differential

equations is realized by means of a DTL circuit.

In Tab. 1, the equivalent dynamic translinear circuits 

for analog realization of a CFOS are depicted, for

complex input signals. 

From Eq. (9), we can represent the impulse response 

of the real input circuit in Tab.1 by the following equation

)()()(
1

0 tUejccth t
ir −+= σ

                      (13)

Subsequently, we can connect CFOS’s in cascade as 

shown in Fig. 3 in order to make a sufficient

approximation to a Gaussian function.

The impulse response of these (n + 1) DTL/CFOS 

stages connected in cascade is given by 

)(
!

)()(
1

1 0 tUe
n

t
jccth t

n
n

ir −
++= σ

           (14)

Note that by increasing the number of stages, we can 

achieve an increasingly better approximation to the

Gaussian function.
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Tab. 1. Equivalent DTL circuit for complex input for the analog 

CFOS stages in [7]. (a) DTL circuit (b) Differential equations

CFOSDTL / CFOSDTL /CFOSDTL /input output

partalRe

partaginaryIm

Fig. 3. Cascade connection of DTL/CFOS

As described above, the Wavelet Transform can be 

obtained by just scaling a (stretching or compressing) and 

by shifting τ (delaying or hastening) in the Gabor

Transform window. Wavelet analysis does not use a time-

frequency region, but rather a time-scale region. There are 

several families of wavelets that have proven to be

especially useful. However, for our interest in cardiac 

signal (one-dimension signal) characterization we use the 

first derivative of a Gaussian smoothing function, since by 

doing so the zero-crossings of the wavelet transform

indicate the location of the signal sharper variation points.

In the resulting circuit we can scale in time (change a
in Eq. 4) by simply controlling the capacitance value C,

or, alternatively, the control current, Io, in the DTL stages.

5. SIMULATION RESULTS

To validate the circuit principle, the circuit was simulated 

using PSPICE default models. The circuit has been

designed to operate from a 1-V supply voltage and a bias 

current Io of 1 µA.

The impulse response of the circuit was simulated by 

applying a unit step waveform in the input and calculating 

the derivative of the output signal. Fig. 4 shows the

resulting responses as a function of the number of   stages 

in our design. As we can see, an improvement in the 

approximation to a Gaussian is obtained for an increase in 

the number of stages. This is also verified in Tab. 2, where 

∆t, ∆ω and their product ∆t∆ω have been given for a

cascade of n stages. However, this improvement will be at 

Io Io Io Io

Io2

Io Io Io Io

Io2

Ixi

Ixr

Io Io

Iur

Iui
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the expense of a larger noise contribution, or alternatively, 

a larger current consumption to overcome to effects of 

accumulation of noise. In general, for the same dynamic

range, we need approximately n2
 times the power.

For ECG characterization, we are interested in a first 

derivative Gaussian wavelet function. In Fig. 5, we can 

see the Gaussian function and its first derivative for a

circuit with 11 stages.

Finally, to implement a Wavelet Transform, we need 

to be able to scale and shift in time the Gaussian function. 

By changing the values of the capacitances accordingly 

we implemented short windows at high frequencies and 

long windows at low frequencies. See Fig. 6.

Alternatively, it is possible to change the value of current 

Io, for the resolution in time is proportional to C/Io.

Fig. 4. Impulse response for different number of stages in the 

connected circuit.

Fig. 5. Gaussian function and its first derivative

Fig. 6. Gaussian function with different scales

n ∆t ∆ω ∆t∆ω
1 0.7068 1.3732 0.9705

2 0.6124 1.1544 0.7069

3 0.5773 1.0954 0.6323

5 0.5477 1.0541 0.5773

11 0.5222 1.0235 0.5344

50 0.5050 1.005 0.5075

Gaussian 0.5 1 0.5

Tab. 2. Number of stages versus time-bandwidth product

6. CONCLUSIONS

A method for implementing the Wavelet Transform in an 

analog way by means of dynamic translinear circuits has 

been proposed. To achieve a sufficient approximation of 

the impulse response to the desired Gaussian window

function, we first proposed an analog Gabor Transform 

filter by means of a cascade connection of complex first 

order systems and subsequently implemented these by 

means of dynamic translinear circuits. Simulations

indicate that by increasing the number of stages, we can 

indeed achieve an increasingly better approximation to the 

desired Gaussian function. Scaling and shifting in the

Gabor Transform window corresponds with controlling 

the capacitance value or the control current in the DTL 

stages and yields the desired wavelet transform. The 

resulting circuit operates from a 1-V supply voltage and a 

bias current of 1µA. From this low-power consumption, 

the advantages of analog and DTL over analog-to-digital

and digital signal processing become apparent for

implantable and injectable biomedical applications. The 

subject of signal characterization by DTL and analog WT 

will be the subject of further investigations.
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