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ABSTRACT

This paper presents a topological method for identifying multiple
static translinear loops using a graphical representation. It is found
that the translinear principle has a new formulation based on graph
theory concepts and it is applied to circuits containing BJTs and
MOS transistors. In addition, it is introduced the concept of transli-
near circ for representing a translinear loop. The types of interac-
tion between translinear loops are studied and its properties are esta-
blished. The method is illustrated with a generic example.

1. INTRODUCTION

The translinear principle introduced by Gilbert [1] provides a way to
analyze and synthesize circuits that exploit the exponential current-
voltage characteristic present in the BJTs. In [2], the principle has
been generalized and extended to circuits containing MOS transis-
tors operating in strong inversion.

A novel class of translinear circuits taking into account the pre-
sence of the bulk terminal of MOS transistors operating in the weak
inversion (both saturated and ohmic) regimes was proposed in [3].
In addition a symbolic representation for MOS transistors is used
for identifying translinear loops.

This paper shows how multiple translinear loops (TLs) can be
identified using graph theory concepts in circuits containing MOS
transistors and BJTs. Graphical models for BJTs operating in the
active region and MOS transistors operating in the weak inversion
(both subthreshold and ohmic) regimes are introduced. These mo-
dels are based on Serrano’s work [3]. The method proposed here
allow us to know possible interactions between translinear loops, and
some properties related with translinear loops are established.

The main result of this work is to find a graphical representation
that can be used for the future development of a verification tool that
plays an important and fundamental role in the structured design of
translinear circuits.

The paper is divided into six Sections. Models and basic nota-
tions are established in Section 2. Section 3 presents the new for-
mulation of the translinear principle and the Section 4 presents a
method for identifying loops. Section 5, focusses on presenting a
classification for translinear loops and analyzing its properties. Sec-
tion 6 concludes the paper.
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Figure 1: Graphical equivalent for NPN bipolar transistors.
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Figure 2: Graphical equivalent for the NMOS transistor operating in
the subthreshold regime.

2. MODELS AND BASIC NOTATIONS

2.1. Graphical Equivalent for BJTs

Each NPN BJT will be modeled by the Ebers-Moll schematic and its
graphical equivalent will contain an edge as shown in Figure 1. A
PNP transistor will be modeled by a similar graphical equivalent to
the shown in the figure 1, but the direction of the edge is inverted.

2.2. Graphical Equivalent for MOS transistors

A NMOS transistor operating in the saturated subthreshold regime
will be represented by a pair of edges as shown in Figure 2, since
both the GS and the BS junction are part of two coupled TL loops.

A NMOS transistor operating in the ohmic subthreshold regime
will be represented by a set of four edges as shown in Figure 3, since
this ohmic device will have four junctions that can be part of several
TL loops.

A PMOS transistor will be modeled by a similar graphical equi-
valent to the one shown in Figures 2 and 3, but all directions of the
edges are inverted.
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Figure 3: Graphical equivalent for the NMOS transistor operating in
the ohmic regime.

3. TRANSLINEAR PRINCIPLE

In this Section, a new concept is introduced taking into account a
previous definition called circ [4]. A translinear loop can be repre-
sented by a translinear circ. A translinear circ TC is a connected
finite alternating sequence of vertices and directed edges

v1; e1; v2; e2; : : : ; vn�1; en; v1

whose n vertices vi are distinct and where each edge represents a
translinear element. A translinear circ has an equal number of edges
oriented in the clockwise (CW) direction and edges oriented in the
counterclockwise (CCW) direction.

A simple derivation of the translinear principle for a single loop
containing N idealized translinear elements can be expressed as fo-
llows [3]:

Theorem 1 In a translinear circ (TC), containing an equal num-
ber of oppositely connected edges, the product of the normalized
currents in the edges connected in the clockwise (CW) direction is
equal to the corresponding product for edges connected in the coun-
terclockwise (CCW) direction.

In a translinear circ (translinear loop), the sum of voltage drops
adds to zero. Applying Kirchhoff’s voltage law to the translinear
circ, the following holds:

0 =
X

j2fCWg

Vej �
X

l2fCCWg

Vel (1)

where e represents an edge (translinear element). For each edge,

Ve = K ln
�
I

Id

�
(2)

where K is equal to VT for BJT’s, nVT for the GS junction of
MOST’s or k for the BS junction of MOST’s, k being equals to
n=(n � 1), approximately 3 when n approximates 1.5, which is
often found in practice. VT equals the thermal voltage kT=q, a-
pproximately 26 mV at room temperature. Id is the transistor cu-
rrent. Then, using (2) in (1) and assuming the loops to be composed
of equivalent devices, this results in:

0 = K
X

j2fCWg

ln
�
Ij
Id

�
�K

X
l2fCCWg

ln
�
Il
Id

�
so

0 = K ln

 Q
j2fCWg

IjQ
l2fCCWg

Il

Q
l2fCCWg

IdQ
j2fCWg

Id
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Figure 4: MOS translinear loop. (a) Circuit schematic representa-
tion. (b) Graphical equivalent.

and thus

1 =

Q
j2fCWg

IjQ
l2fCCWg

Il

Q
l2fCCWg

IdQ
j2fCWg

Id
: (3)

Since the number of CW-oriented edges is equal to the number of
CCW-oriented edges, the Id coefficients in (3) cancel out, thus re-
sulting in

Y
j2fCWg

Ij =
Y

l2fCCWg

Il: (4)

Note that the logarithm of the weight of each edge corresponds
to the voltage drop across a translinear element in the loop. Then, the
sum of the weights of the edges oriented in the clockwise direction
is equal to the total weight of the edges oriented in the counterclock-
wise direction.

X
j2fCWg

Wej =
X

l2fCCWg

Wel (5)

To illustrate Theorem 1, the circuit shown in Figure 4 is ana-
lyzed. The circuit has a single translinear loop containing four iden-
tical translinear elements, two of which face in the clockwise direc-
tion and two of which face in the counterclockwise direction. In Fig.
4(a) a circuit schematic representation implemented with MOS tran-
sistors is shown. Fig. 4(b) shows the same loop, but the graphical
equivalent is used. The EBS edges are not shown because their ter-
minals are short circuited together and they will not have any effect
on the circuit behaviour.
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4. TOPOLOGICAL METHOD

The aim of the method is to find the topological equivalent called
translinear circ embedded in the dead graph of the circuit. A dead
graph is the graph obtained by eliminating all independent sources,
i.e. the voltage sources and current sources are transformed into
short circuits or open circuits, respectively. A first consequence of
this fact is the following property.

Property 1 A circuit is translinear if one or more translinear circs
are found embedded in the resulting dead graph of the circuit.

Each device present in the circuit will be replaced by a graphi-
cal equivalent. The resulting dead graph will be formed by a set of
graphical equivalents. The purpose of the method is to identify the
devices involved in each translinear loop. A translinear circuit may
consist of more than one translinear loop.

A systematic method can be implemented to realize this identi-
fication using the dead graph of the circuit.

The method can be recast in the next steps:

1. Find a translinear circ that represents a fundamental transli-
near loop.

2. Extract the information about each edge of the translinear
circ.

3. Enumerate the devices involved.

4. Repeat the whole procedure (if posssible) again.

Fig. 5 illustrates this method. In Fig. 5-(a) a translinear circuit
containing BJTs is presented [5]. The dead graph of the circuit is
shown in the figure 5-(b). The application of the method allow us
identify a pair of embedded translinear loops in the circuit topology.
The first loop is formed by Q1�Q2�Q3�Q4. The second loop is
formed by Q5 �Q6 �Q7 �Q4. Fig. 6 shows the translinear loops
represented by translinear circs.

5. CLASSIFICATION AND PROPERTIES OF
TRANSLINEAR LOOPS

The presence of more than one translinear loop allow us to define
some properties of the different loops involved and classify them.
The classification is established by taking into account the follo-
wing definitions. Note that the term translinear circ is the graph
theory concept used for representing a translinear loop.

Definition 1 A translinear circ is said to be fundamental if its ele-
ments produce multiplications of currents.

Definition 2 A translinear circ is said to be trivial if it contains no
multiplications of currents.

Property 2 A translinear circuit have L fundamental translinear
circs. The number of fundamental loops is given by L = NTE �
NV + 1 where NTE is the number of translinear elements and NV
is the number of vertices of the circuit.

As an example, consider the translinear cell depicted in Figure 5.
Here L = 7� 6 + 1 = 2.

Different translinear circs can either be disjoint or coupled. Cou-
pled loops can be coupled directly or indirectly.

Definition 3 Two translinear circs are said to be coupled directly if
they have one or more edges in common.

I1
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I3

1Q

Q 2 Q 3

Q 4

Q 5 6Q

7Q
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(b)

Figure 5: A BJT translinear cell. (a) Circuit schematic representa-
tion. (b) Graphical representation.

D BE1

D BE2

D BE3

D BE4

D BE4 D BE6

BE5D

BE7D

Figure 6: Embedded translinear loops in the circuit of Figure 5.
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Figure 7: (a) Coupled indirectly translinear circs. (b) Coupled di-
rectly translinear circs.

TC1 TC2

Figure 8: Disjoint translinear circs.

Definition 4 Two translinear circs are said to be coupled indirectly
if they have a vertex in common.

Definition 5 Two translinear circs are said to be disjoint if they be-
long to two disjoint graphs.

Property 3 If coupled translinear circs exist in a dead graph, then
more than L different translinear circs are present.

The possible elements are BJTs and MOS transistors. When
a mixed loop appears, an equal number of devices of each type of
device must be present.

Definition 6 A translinear circ is said to be pure circ, if the circ
contains a unique type of possible devices.

Definition 7 A translinear circ is said to be mixed circ, if the circ
contains both types of possible devices.

Property 4 A translinear loop contains at least two elements.

Property 5 Let TC1 and TC2 be different translinear circs and
Gs = TC1 \ TC2, then Gs is either

1. A vertex (coupled undirectly circs), or

2. A path (coupled directly circs), or

3. An empty set.

As an example, consider the pair of translinear circs in Figure 6.
The application of Property 6 allow us to obtain the graph shown in
Figure 9. The resulting graph is a path composed by one edge.

D BE4

Figure 9: The application of the Property 6 to the translinear circs
shown in Figure 6.
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Figure 10: The application of the Property 7 to the translinear circs
shown in Figure 6.

Property 6 Let TC1 and TC2 be different translinear circs and
Gs = TC1 � TC2, where oplus denotes the factored graph no-
tation, then Gs is either

1. A translinear circ, or

2. The union of disjoint translinear circs.

As an example, consider the pair of translinear circs in Figure 6.
The application of Property 7 allow us to obtain the graph shown in
Figure 10. The resulting graph is a translinear circ.

6. CONCLUSIONS

A method based on graph theory concepts for identifying transli-
near loops is provided. Concepts related with the interaction bet-
ween translinear loops are studied. The new formulation is used for
analyzing and searching embedded multiple translinear loops (re-
presented by translinear circs) in a circuit topology (represented by
a graph). A classification and several properties for translinear loops
are derived. In addition, the method can be easily modified to iden-
tify dynamic translinear loops. Further work is the development of a
verification tool used in a future structured analog design methodo-
logy for translinear circuits.
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