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ABSTRACT 
This paper introduces a translinear second-order oscilla- 
tor that is a direct implementation of a nson-linear second- 
order differential equation. It comprises only two capaci- 
tors and a handful of transistors and can be controlled 
over a very wide frequency range by only one control 
current. A breadboard version, using transistor arrays, 
proves the correct operation of the proposed circuit. The 
oscillator frequency equals 25 kHz, while the total har- 
monic distortion equals 2.4 %. 

1 Introduction 
Recently, both an analysis method <and a synthesis 
method for dynamic translinear circuits were proposed by 
the Authors [l, 21. The dynamic translinear principle can 
be regarded as a generalization of the well-known ‘static’ 
translinear principle, formulated by Gilbert in 1975 [3]. 

An important subclass of dynamic translinear circuits 
is the class of ‘translinear filters,’ also ca,lled ‘log-domain’ 
or ‘exponential state-space’ filters, which were originally 
introduced by Adams in 1979 [4]. Allthough not rec- 
ognized then, this was actually the first time a first- 
order linear differential equation was implemented using 
translinear circuit techniques. In 1990, Seevinck intro- 
duced a ‘companding current-mode integrator’ [5] and 
since then the principle of translinear filtering has been 
extensively studied by Frey, see, e.g., [SI, Punzenberger 
and Enz [7], Toumazou and Lande [8], Perry and Roberts 
[9] and Mulder et al. [lo]. 

However, the dynamic translinear principle is not lim- 
ited to filters, i.e. linear differential equations. Using 
the dynamic translinear principle, it is possible to  imple- 
ment every linear or non-linear differential equation, us- 
ing transistors and capacitors only. See, e.g., [14]. Hence, 
a high functional density can be obtained[, whereas the ab- 
sence of large resistors makes them especially interesting 
for ultra-low-power applications [15]. 

Apart from this, dynamic translinear circuits also ex- 
hibit other interesting properties. 

1. Owing to the exponential behavior of a bipolar tran- 
sistor or a MOS transistor in its subthreshold region, 
the voltages in dynamic translinear circuits are log- 
arithmically related to the currents. As a result, the 

voltage excursions are small, typically only a few tens 
of millivolts. This is beneficial in a low-voltage envi- 
ronment. 

Due to these small voltage swings, the effects of par- 
asitic capacitances are reduced. This facilitates rel- 
atively wide bandwidth operation [ll, 121. 

Dynamic translinear circuits are easily controlled 
over a wide range of several parameters, such as 
gain, frequency or threshold. This increases their 
designability and makes them attractive to be imple- 
mented as standard cells or programmable building 
blocks. 

Dynamic translinear circuits are easily implemented 
in class AB, which enables the signal currents to be 
much larger than the quiescent currents. This, in 
turn, entails a larger dynamic range and a reduced 
average current consumption [13]. 

In dynamic translinear circuits, transistors are used 
either as elements of the translinear loops or as nul- 
lors, to provide additional loop gain. Hence, in an IC 
process only three types of components are required: 

transistors that are well matched and have an 
accurate exponential transfer over a wide range 
of transistor current, 

0 transistors with a large gain, also at higher fre- 
quencies, and 

e capacitors. 

Second-order oscillators are important building blocks 
in electronic systems to  generate a periodic signal from 
DC power. They implement a second-order differential 
equation, which ideally equals 

.(t) + W % ( t )  = 0 

z ( t )  and w being the oscillator signal and the angular 
frequency, respectively. The dot represents differentiation 
with respect to  time. 

In order to compensate for the effects of non-idealities, 
such as noise and drift, in the oscillator circuitry, which 
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cause the oscillator amplitude to be unstable, all practi- 
cal second-order oscillators somehow implement the (non- 
linear) second-order differential equation 

(2) 
2 q t )  + f ( x ) S ( t )  + w x ( t )  = 0 

where f (z)  is an  arbitrary (non-linear) even-symmetry 
function of x .  When f ( x )  > 0, the oscillator is damped 
and the amplitude decreases. When f(z) < 0, the oscil- 
lator is undamped and the amplitude increases. 

One way to  implement (2) is to  use a (passive) res- 
onator and a non-linear time-invariant circuit or com- 
ponent to undamp the resonator. Usually, this type of 
oscillator is used to achieve a low phase noise. Another 
approach is the use of two active integrators in a two- 
integrator oscillator. This paves the way to  a good (fre- 
quency) tunability. 

The first translinear oscillator was proposed not earlier 
than in 1995, by Pookaiyaudom and Mahattanakul [16]. 
The circuit, basically, comprises a cascade of an inverter 
(a current mirror) and two first-order all-pass filters that  
each have a transfer function 

y ( t )  4- w j / ( t )  = x ( t )  - w S ( t )  (3) 

x ( t )  and y ( t )  being the filter input and output signal, 
respectively. The undamping circuit, an AGC, was not 
discussed in the paper. 

Although not (yet) verified experimentally, simulations 
predicted a wide tuning range and the ability to  operate 
from low supply voltages. These attractive properties are 
characteristic of translinear circuits [l]. 

Here we present the design and experimental results of 
a wide-tunable translinear second-order oscillator. The 
circuit, which comprises only two capacitors and a hand- 
ful of transistors, is a direct implementation of a non- 
linear second-order differential equation and is tuned by 
only one control current. 

2 Operation principle 
The block diagram of the proposed circuit is depicted in 
Figure 1. It  contains two integrators in a feedback con- 
figuration and a non-linear time-invariant block F .  This 
circuit implements the (non-linear) second-order differen- 
tial equation 

.(t) + 2wS(t) + w2x(t)  = k ( x ( t ) )  (4) 

Comparing (2) and (4), it follows that, in order to im- 
plement an  oscillator, F must be an odd-symmetry func- 
tion of x ,  whose derivative with respect to x is larger than 
two for small values of x and smaller than two for large 
values of z. A suitable choice is 

2Gx 
F ( x )  = 7 

2 + I  (5) 

G being a constant, which is larger than one. This func- 
tion is easily implemented in a translinear circuit [12]. 

Using (5), the equation describing the complete oscilla- 
tor becomes 

&(t) + w 2 x ( t )  = 0 (6) 

Note that the signal amplitude, the signal wave form and 
to some extent the signal frequency, all depend on the 
value of G. 

3 Circuit description 
A possible, very compact embodiment of a translinear 
integrator was presented in [5]. See Figure 2. Its output 
current equals 

(7) 

VT being the thermal voltage kT/q. 
From this expression, it can be deduced that the time 

constant of the integrator, and thus the oscillator fre- 
quency fc, can be electronically controlled by means of a 
current IO. - 

l o  (Hz) 
fc = 

As in all translinear circuits, the voltages are non-linearly, 
in this case logarithmically, related to  the input and out- 
put currents, while the transfer function is linear as a 
whole. This companding action is beneficial in a low- 
voltage environment. 

The complete circuit diagram of the translinear oscil- 
lator is depicted in Figure 3. The heart of the two inte- 
grators is formed by transistors QN1 through QN6 and 
Q N l l  through QN16, respectively. QN7 and QN17 pro- 
vide a current sink for the emitter currents of QN2 and 
QN12. QN8, QN9 and QNl8 are connected as current fol- 
lowers and reduce the influence of the Early effect. The 
current mirror with two outputs, formed by QP1, QP2 
and QP3, implements the feedback loop around the left 
integrator and delivers its output current to the input 
of the right integrator. The feedback loop around the 
right integrator would lead to two paths from capacitor 
C2 back to the integrator input, having opposite transfers 
that  cancel each other. These paths are thus redundant. 
This explains why QN15 is missing. 

The embodiment of the odd-symmetry function F was 
inspired by the generic principle described in [12] and 
adapted for our purposes. The heart is formed by tran- 
sistors QN21 through QN26. QN27 takes care of the sym- 
metrical driving. Current mirror QP21,QP22 doubles the 
output current and eliminates its common-mode compo- 
nent. The constant G i n  (5) equals Io / IG .  Finally, QN28 
provides the oscillator output current. 

4 Experimental results 
The circuit shown in Figure 3 was simulated using SPICE 
and realistic (IC) capacitor and (minimum-size) transis- 
tor models. The results indicate the correct operation 
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of the translinear oscillator for various temperatures and 
values of Io,  IG (> Io )  and C1 (= Cz), yielding oscilla- 
tions from 70 mHz (C,  = Cz = 1 nF, I,-) = 10 PA) up to 
250 MHz (C,  = Cz = 1 pF, IO = 1 mA). The supply volt- 
age equaled 3.3 V. For IG/ Io  = 1.1, the total harmonic 
distortion was below 2 %. 

To verify the circuit operation in practice, the oscil- 
lator was “breadboarded,” using transistor arrays of a 
standard 2 pm, 5 GHz IC process. Current sources IO 
were implemented by 10 MR resistors; current sink IG by 
a 2.7 MR resistor. Current sink Io was embodied by con- 
necting an additional transistor in parallel with QN11. C1 
and Cz equaled 47 pF. The supply voltalge again equaled 
3.3 V. Figure 4 shows the measured output spectrum of 
the translinear oscillator (upper curve). The oscillator 
frequency equals 25 kHz, which is in accordance with (8). 
The total harmonic distortion equals 2.4 % and mainly re- 
sults from the second harmonic at 50 kIIz. This suggests 
that  for a fully integrated version of the circuit, due to  a 
better matching between the devices, a llower distortion is 
feasible. The frequency component a t  36 kHz originates 
from the measurement setup. This can be deduced from 
the lower curve, which depicts the 0utpu.t spectrum when 
the oscillator is disconnected from its power supply. 

5 Conclusions 
A translinear second-order oscillator has been introduced. 
The circuit is a direct implementation. of a non-linear 
second-order differential equation. It comprises only two 
capacitors and handful of transistors and can be con- 
trolled over a very wide frequency range by only one con- 
trol current ( IO) .  A breadboard version, using transistor 
arrays, has proved the correct operation of the proposed 
circuit. 
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Figure 1: Block diagram of the translinear oscillator 
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Figure 2: Compact translinear integrator by Seevinck 

Figure 3: Circuit diagram of the translinear oscillator 
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Figure 4: Measured output spectrum of the translinear oscillator (upper curve). The oscillator frequency equals 25 kHz. 
The total harmonic distortion equals 2.4 %. The 36 kHz frequency component originates from the measurement setup 
and is also visible when the oscillator is switched off (lower curve). 
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