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ABSTRACT 

So far, there have been introduced many front-end studies, but 

most of them fail to present, in a consistent way, how the signals 

are transformed throughout the front-end itself. In this paper, it is 

intended to introduce a unique presentation of spectrum and signal 

transformation within RF front-ends. This approach should help 

researches to have better insight into the high-level modeling and 

characterization of RF front-ends and accordingly lead to new 

design strategies. 

1. INTRODUCTION 

For the last few decades, if it is about proposing new architectures, 

there haven’t been many significant breakthroughs in the field of 

the radio frequency front-end design, as almost all the time two 

basic structures – high and zero IF – and some slight variations of 

theirs have been exploited.  Even though the number of different 

topologies is very small, the high-level front-end characterization 

lacks an unique presentation, which in turn prevents researchers 

from even dare thinking of new strategies and approaches in the 

area of analog radio frequency front-end design.  

In most papers dealing with any aspect of RF front-ends, the 

high-level description in the form of signal and spectrum 

presentation is either intentionally or accidentally skipped. In this 

paper, this issue will be deliberately addressed, as without a 

complete understanding of how the signals and their spectra are 

shaped throughout the front-end, it is not possible to grasp any 

other concept encountered in the jungle named RF front-end 

design. 

This paper is divided in seven sections, each emphasizing one 

of the important aspects of the high-level characterization of the 

front-end architectures, for the sake of brevity simplified to the 

level of mixer-oscillator structures. The following section deals 

with signal transformation, while in Section 3 the spectrum 

transformation as applied to the front-end is analyzed. Section 4 

introduces the concept of different mixer-local oscillator models 

and subsequently, using their specific properties, it provides a 

guidance for an all-encompassing analysis of signal and spectrum 

transformations. In Section 5, the resulting model is extended to be 

used for the image-rejection ratio calculations, which can 

straightforwardly be used for characterizing models of any 

complexity. In Section 6, the proposed model is applied to the 

example of image rejection mixer architecture. 

2. SIGNAL TRANSFORMATION 

Let us consider a simple quadrature downconversion structure as 

depicted in Fig. 1a. 

Fig. 1 (a) Quadrature downconverter.      (b) Symbol. 

The input signal denoted as S(t) is defined in Eq. (1), where A

and B are quadrature components of the desired signal at ωRF, and 

C and D quadrature components of the image signal at ωIM. Its 

spectrum is shown in Fig. 2, where ωIF is the intermediate 

frequency and ω0 the LO frequency.
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Fig. 2   Spectra of the desired, the mirror and the LO signal. 

Mathematical representation of the signal transformation is 

obtained as follows:
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As the complex presentation of the  input signal S(t) is: 

tjtj

tjtj

IMIM

RFRF

ejDCejDC

ejBAejBAtS
ωω

ωω

−

−

−++
+−++=

)()(

)()()(2

)()(

)(2
ψωψω +−+

+−+

⋅+⋅
+⋅+⋅=

tjtj

�)tj(��)tj(�

IMIM

RFRF

eMeM

eReRtS
                                (2) 

the in-phase (I) and  the quadrature-phase (Q) component equal:  
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Now, we can consider the converted signal as a whole, 

consisting of I and Q components, in the form: 

)()2(
tj�tj IFIF  (C-jD)eejBAjQI +−=+ − ω

              (5) 
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This expression will be used as the base for the subsequent 

characterization of the front-end models. As all the signals are 

actually real, the real value of the signal equals: 
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The resulting spectra of the desired signal and image are at the 

negative and positive frequencies respectively –  Fig. 3. 

Fig. 3  Spectrum of the input signal after downconversion. 

As seen from Fig. 3, the signal is characterized by both 

spectrum position and its exact content in the form of orthogonal 

components A and B. After downconversion, the signal is still 

detectable, consisting of corresponding I-phase and Q-phase 

components A-jB. Its real value is the same as that of the signal 

entering the receiver AcosωRFt-BsinωRFt.

3. SPECTRUM TRANSFORMATION 

Let us now determine how the spectrum is transformed by the 

down-conversion process. For the sake of simplicity, filters are 

omitted in all down-converter models throughout this paper, but it 

is assumed that each portion of downconversion is followed by a 

portion of filtering (low pass or band-pass). This means that only 

down-converted parts of the spectrum are taken into account.    

To have better understanding of the down-conversion process, 

we will independently investigate I and Q paths, i.e., 

downconversion with sinωOt and cosωOt, respectively. The 

spectrum of the input signal together with the spectrum of the local 

oscillator (LO) signal are shown in Fig. 2. 

As downconversion is equivalent to convolution of spectral 

representation of cosωOt and sinωOt with the spectrum of the input 

signal, the corresponding output spectrum for I and Q paths is as 

given in Fig. 4. 

Fig. 4   Spectra of I and Q channels. 

After the transformation of the Q-spectrum into the jQ one, as 

has been done with the mathematical representation of the signal 

so as to maintain the complex notation, when both I and Q spectra 

are “real”, the resulting spectrum can be obtained after summation 

of the spectra of corresponding orthogonal components, I+jQ (see 

Fig. 3). 

Thus, we have derived an explicit relation between the spectral 

and mathematical representation of the signal. To be even more 

specific, let us stress that after frequency conversion the desired 

signal is at frequency –ωIF and presented in the form (A-jB)e-jωIFt
 , 

where A-jB is just a mathematical interpretation of quadrature 

components of the signal, which is in fact “real” and of the same 

form  as given by Eq. (6). 

Not surprisingly, this form is the same as of the signal entering 

the system. Furthermore, by presenting signal in this way (A-jB),

more useful information characterizing the signal is available. The 

components of the signal can still be distinguished between each 

other as signal orthogonality is preserved. To keep track of both 

spectrum and signal content, one might straightforwardly use the 

presentation shown in Fig. 3 - in this paper called spectrum-signal 

presentation.

4. MIXER-LOCAL OSCILLATOR MODELS 

In order to bring more order and consistence in the modeling of the 

RF front-end architectures, the models of real_mixer-LO,

single_complex_mixer-LO and double_complex_mixer-LO are 

introduced. These models are meant to simplify the corresponding 

mixer-local oscillator structures for the purpose of facilitating the 

spectral analysis of the RF front-ends. Subsequently, it is examined 

how the spectrum of the input signal is transformed in the real 

front-end architectures. 

4.1 Real_mixer-LO 

As in the case of the superheterodyne architectures, it is not 

possible to distinguish between the desired signal and image 

after first down-conversion without previous filtering (image-

reject filters). This is shown in Figs. 2 and 4 (I path). 

4.2  Single_complex_mixer-LO 

In order to take the advantage of using single_complex_mixer-LO 

(symbol is given in Fig. 1b) for the purpose of easier graphical and 

mathematical presentation, it is necessary to first transform all the 

spectral components to either positive or negative frequencies. This 

is done because LO doesn’t “see” the signal at both positive and 

negative frequencies. Illustration is given in Fig 5. 

Fig. 5   Single_complex_mixer-LO (spectra). 

The mathematical counterpart of this kind of presentation is 

explained as follows (for this purpose we are considering signal of 

the form (2) as the one entering the receiver). 

Transformation of the components at the frequency ωRF and ωIM

to –ωRF  and –ωIM  is, with respect to the signal content, equivalent 

to the summation of non-transformed and complement of the 

transformed parts. In this case it yields: 
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Knowing the signal content, we can play with the introduced 

single_complex_mixer-LO model (S_C_M-LO) and perform the 

transformation as shown in Fig. 5. 

As explained in Section 2 (signal presentation) and Section 3 

(spectral presentation), we can now easily follow how both the 

signal and its spectrum are being transformed. 
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4.3 Double_complex_mixer-LO 

Let us now consider an even more complicated case in the form of 

the double quadrature downconverter, as shown in Figs. 6a and 6b. 

    Fig. 6   Double_complex_mixer-LO (symbols). 

Unlike S_C_M-LO, in a double_complex_mixer-LO model    

(D_C_M-LO), LO “sees” the signal at both positive and negative 

frequencies. In this case LO can be presented as e
jωt

 [1] without 

any transformation of the spectrum. Fig. 7 shows the spectrum-

signal form of downconversion from the intermediate frequency 

using the proposed D_C_M-LO model (first downconversion has 

already been done with simple quadrature downconverter).  

Fig. 7   Double_complex_mixer-LO (spectra). 

This will be clarified through an all-encompassing spectral 

analysis of double quadrature downconverter model. 

This structure can equivalently be represented using S_C_M-

LO (Fig. 6c).  Spectrum-signal form of the input signal is shown in 

Fig. 2, where the mathematical representation of the signal is 

allocated to each part of the spectrum according to the explanation 

from the previous sections (NB: in the context of transformation 

of the spectra, the term “signal” is actually referred to 

mathematical representation of the signal). 

Before applying the analysis method introduced here, the signal 

is presented in such a way so that S_C_M-LO can 

straightforwardly be used.  
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    Without loss of generality, one might assume that first 

downconversion with S_C_M-LO has already been done and that 

spectrum-signal form at the intermediate frequency is as shown in 

Fig. 3. 

Now, it is possible to transform the model of Fig. 3 into the one 

of Fig. 8, corresponding to the I and Q channels of the 

downconverted signal – Eq. (7). 
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As expected, the image is suppressed after the final 

downconversion. Also, as the resulting spectrum of Fig. 8 is the 

same as the resulting spectrum of Fig. 7, the validity of the 

proposed spectrum-signal form of D_C_M-LO model is proved.  

Not intending to introduce additional confusion due to 

interchangeable use of signal presentation in real and complex 

form, here are some explanations with respect to this issue. All 

signals  are  real;  complex  notation  is  used  only to keep  track of 

orthogonal components of the signal. For example, A+jB means 

  Fig. 8   D_C_M-LO using S_C_M-LO models (spectra). 

that there is still information about signal A and signal B, while 

A+B means that it is not possible to distinguish between them.  To 

conclude this part, complex notation is used just as the abstraction 

of the signal in the RF front-ends. 

With the advantage of double_complex_mixer-LO model we 

can manipulate using fairly simple forms of signals and spectra 

compared to spectrum-signal form of Fig. 8, or even more 

complicated analysis found in [2][3] and Figs. 2, 3, and 4 (what is 

more, in this case all the given transformations must be done twice, 

once for I and once for Q channel). 

The  simplicity of the spectrum-signal form of D_C_M-LO 

model is shown in Fig. 7. 

Note that transformations of Fig. 5 are introduced so as to give 

more insight into the content of the signal, being together the 

desired and the mirror signal. If the same is applied to the 

spectrum-signal form of Fig. 3 the signal can be presented as   

jDCjBAjDCjBA ++−=−+− )()(

This suggests that the phase sequences [4] of the desired signal and 

the signal of image are of different polarities. Owing to this 

property of the downconverted signals, the polyphase filters can 

distinguish between the positive and negative sequences, being the 

clockwise and counterclockwise phase order of the signals.  

5. IRR MODEL 

Straightforward use of the spectrum-signal transformation yields 

simple but accurate explanations of many phenomena related to the 

RF front-ends. As an example, we will evaluate the image-

rejection-ratio IRR of a simple quadrature downconverter section. 

First, let us denote ε and ϕ as amplitude and phase mismatch of 

the LO signal, as shown in Fig. 9. 

Fig. 9   IRR analysis model. 

For LO signal it can be written: 
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Without loss of generality, constants ½ and 2 that originate from 

the mixing with the LO signal can be left out, as we are only 

interested in the form of the signal, as well as the position of the 

spectrum, which are not affected using this simplification. 

The IRR will first be found using strictly mathematical 

interpretation of the signals and subsequently it will be shown how 
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much simpler it is to come up with the same result using spectrum-

signal notation.  

In this particular case, S_C_M-LO is actually transformed into 

a kind of “distorted” real_mixer-LO, so that positive and negative 

frequency ranges are “seen” by the local oscillator (as, in fact, also 

occurs in Fig. 2). 

If the low-filtered version of the output signal is: 

),(),(

),(),(
)(

1

)(

2

)(

2

)(

1
ψωθω

ψωθω

ϕεϕε
ϕεϕε

−+

−−+−

+
++∝

tjtj

tjtj

IFIF

IFIF

eMXeRX

eMXeRXOUT
       (9) 

then IRR, as the ratio of image and signal power at either positive 

or negative frequencies, can be calculated as: 
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Not surprisingly, the well-known expression for the IRR [3] is 

obtained. 

Let us now examine how powerful the all-encompassing 

spectrum-signal analysis method is when applied to the same 

downconverter architecture. 

The complete story is given in Fig. 10, where the spectra of the 

desired signal, the image and LO are presented for the case before 

and after conversion. 

Fig. 10   Spectrum-signal transformation in case of mismatch. 

From this figure, it is obvious to what extent the desired signal 

and the image are affected, so that IRR can therefore readily be 

calculated as in Eq. (10). 

If one takes for example the case where ε1 and ϕ1 are amplitude 

and phase deviation of I-phase and ε2 and ϕ2 amplitude and phase 

deviation of Q-phase component of the LO signal, calculation of 

the IRR without the model proposed here will be very complicated. 

However, by means of the functions X1 and X2 of the form  
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as well as Eq. (10) and Fig. 10, IRR analysis appears to be much 

simpler. 

6. AN ALL-ROUND EXAMPLE 

To examine all the aspects of the proposed spectral analysis model 

– spectrum-signal transformation, we will use an all-round 

downconversion architecture being image-reject mixer architecture 

shown in Fig. 11a (standard form), and Fig. 11b (model as 

proposed here). 

Fig. 11   Image-reject mixer architecture. 

    The spectrum-signal form is shown in Figs. 5 and 7. 

    For the purpose of IRR calculations, we are considering only  

part of the structure shown in Fig. 11 that is given in Fig. 12. 

Using the proposed method, a rather complex structure, especially 

for the calculation of IRR [4], boils down to an easy to understand 

and implement method, re-explained in Fig. 13, where the first 

downconversion is the same as in Fig. 10.   

Fig. 12   IRR analysis model. 

Fig. 13  Spectrum-signal transformation in case of mismatch. 

As stated in Section 4, components that originate from different 

sides of the frequency axis are added in complement. The IRR is 

now calculated from Eq. (12) as [3]: 
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7. CONCLUSIONS

The complex signal technique combined together with the spectral 

presentation has proven to be a very powerful tool in both 

characterization and understanding the nature of RF front-ends, 

especially for researchers and designers entering the world of radio 

frequency microelectronics for the first time. Based on the existing 

models, an all-encompassing spectral analysis method is 

introduced in this paper, which addresses the issue of a consistent 

presentation of signal and its spectrum throughout the receive path 

of the RF front-ends. The proposed model relies on so-called 

spectrum-signal presentation offering a full interpretation of how 

both the signal and its spectrum are transformed when being 

downconverted from the high frequency range at the input up to 

the low frequency range at the output of the RF front-end. 
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