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Abstract:

A novel procedure to implement the wavelet transform
using analog circuitry is presented. First, an approxima-
tion is used to calculate the transfer function of the filter,
whose impulse response is the required wavelet. Next, to
meet low-power low-voltage requirements, we optimize
the state-space description of the filter with respect to dy-
namic range, sensitivity and sparsity. The filter design that
follows is based on an orthonormal ladder structure and
employs log-domain integrators as main building blocks.
Measurements demonstrate that it approximates the re-
quired wavelet base (i.e. Morlet) in an excellent way. The
tenth-order log-domain filter operates from a 1.5-V supply
voltage and a total bias current of 4.3µA.

1. Introduction

The Wavelet Transform (WT) is a merited technique for
analysis of non-stationary signals like cardiac signals. Be-
ing a multiscale analysis technique, it offers the possibility
of selective noise filtering and reliable parameter estima-
tion. Often WT systems employ the discrete wavelet trans-
form, implemented in a digital signal processor. How-
ever, in ultra low-power applications such as biomedical
implantable devices, it is not suitable to implement the
WT by means of digital circuitry due to the high power
consumption associated with the required A/D converter.
Low-power analog realization of the wavelet transform en-
ables its application in vivo, e.g. pacemakers, where the
wavelet transform provides a means to extremely reliable
cardiac signal detection.

2. Low-power analog wavelet filter design

The design of an analog wavelet filter, i.e., a filter that
performs a WT, can be summarized by the steps shown
in the procedure depicted in Fig.1. Although any func-
tion that has finite energy, is square integrable and satisfies
the wavelet admissibility condition can be a wavelet [1],
the discussion in this paper shall deal with the design
of a Morlet wavelet filter. The Morlet wavelet base un-
der consideration is obtained from a Gaussian envelope
multiplied by a cosine function [1], and is described by
ψ(t) = cos(5

√
2(t − 3))e−(t−3)2 . In order to control the

frequency range of the wavelet system and the respective
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Figure 1: Analog wavelet filter design procedure.

scales, one can add a time constant term τ , resulting in

f(t) = cos(
5
√

2

τ
(t − 3 · τ))e−( t−3·τ

τ )2 . (1)

Its corresponding Fourier transform is given by

F (ω) =

√
π

2
(e−

1
4
( ω−5

√
2·τ−1

τ−1
)2 + e−

1
4
( ω+5

√
2·τ−1

τ−1
)2). (2)

The time and frequency response of the Morlet wavelet are
given in Fig.2. Note that by changing τ the Q-factor of the
filter remains constant and in this case is equal to 2.55.

125 −×= τωc
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Figure 2: Ideal Morlet function. Time and frequency re-
sponse .

A wavelet filter implementation is based on a bandpass fil-
ter design which presents an impulse response that equals
a wavelet. The starting point of analog filter design is the
definition of the respective transfer function (or differen-
tial equation). However, a linear differential equation hav-
ing a predefined desired impulse response does not always
exist. Thus, one is obliged to use a suitable approximation
method. There are several mathematical techniques that
are frequently used to achieve the best approximation pos-
sible. Nonetheless, one of the most important aspects for
analog filter synthesis is that the approximating function
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must lead to a physically realizable network which is dy-
namically stable [2].
As there are many possible state-space descriptions for a
circuit that implements a certain transfer function, the de-
signer has to find a circuit that fits his specific require-
ments. For low-power low-voltage applications, we opti-
mize the state-space description of the filter for dynamic
range, sensitivity and sparsity requirements [3].
The final step will be the design of the integrator, which
will be the main building block of the wavelet filter.
For continuous-time filters, there are basically two pos-
sible integrator types, being linear or nonlinear (e.g., log-
domain). The main advantage of log-domain filters with
respect to other low-power techniques is the ability to han-
dle a large dynamic range in a low-voltage environment.
Moreover, only transistors and capacitors are required to
realize these functions.

2.1 Analog Wavelet bases - the need for approx-
imation

The proposed procedure that generates a transfer function
of a wavelet base (in this case a Morlet function) is based
on the Padé approximation in the Laplace domain of the
impulse response of the filter [2]. The Padé approximation
is given by

F (s) =
P (s)

Q(s)
=

p0 + p1s + . . . + pmsm

q0 + q1s + . . . + qnsn
(3)

where F (s) is the Taylor series truncated around some
point, e.g. s = 0 and qn = 1 for normalization. If the
approximating rational function has a numerator of order
m and a denominator of order n, the original function can
be approximated up to order m + n + 1. The computation
of the coefficients of P (s) and Q(s) has been described
in [2]. We apply a [8/10] Padé approximation, i.e., m=8
and n=10, which yields an approximation of order k=19 of
the Taylor series expansion. As the main advantage of the
Padé method is its computational simplicity and its gen-
eral applicability, it can easily be applied to other wavelet
bases as well. The resulting transfer function of the Morlet
wavelet filter is H(s) = (0.9s8−13s7+177s6−618s5+345s4+7·
104s3−4 ·105s2 +2 ·106s−3 ·106)/(s10 +13s9 +336s8 +3 ·103s7 +

4 ·104s6 +2 ·105s5 +2 ·106s4 +8 ·106s3 +4 ·107s2 +9 ·107s+3 ·108)

2.2 State-space optimization

Departing from the transfer function derived in Section
2.1, one can generate a state space description of the filter,
which is optimized with respect to the Dynamic Range.
In [3] a method to optimize the state space description
of a dynamical system is presented, based on the observ-
ability and controllability gramians. The resulting sys-
tem has, under certain conditions, the maximum dynamic
range which is achievable, given the total amount of ca-
pacitance. The controllability and observability gramians
are derived from the state space description. The defini-
tion of the controllability gramian is related to the system
matrices A and B

K =

∫ ∞

0

eAtBBT eAT tdt (4)

and the observability gramian is related to the system ma-
trices A and C

W =

∫ ∞

0

eAT tCT CeAtdt. (5)

where A, B and C are the state, input, and output ma-
trices of the state-space description, respectively. As the
dynamic range of a circuit is defined as the ratio between
the maximum and the minimum signal level that it can
process, optimization of the dynamic range is equivalent
to the simultaneous maximization of the (distortion-less)
output swing (resulting from a similarity transform of the
controllability gramian) and the minimization of the over-
all noise contribution (by a similarity transform of the ob-
servability gramian).
Finally, profiting from the well-known fact that the rela-
tive noise contribution of an integrator decreases when the
capacitance and bias current increase, we match an opti-
mal capacitance distribution to the noise contributions of
each individual integrator (noise scaling), resulting in [3]

Ci =

√
αiwiikii∑

j

√
αjwjjkjj

(6)

where kii and wii are the main diagonal elements of K and
W , respectively, αi =

∑
j |Aij | is the absolute sum of the

elements on the i-th row of A, and Ci is the capacitance in
integrator i.

2.2.1 Sparsity
The drawback of a dynamic-range optimal system is that
its state-space matrices are generally fully dense, i.e., all
the entries of the A, B, C matrices are filled with nonzero
elements. These coefficients will have to be mapped onto
circuit components, and will result in a complex circuit
with a large number of interconnections. For high-order
filters it is therefore necessary to investigate how a realiza-
tion of the desired transfer function having sparser state-
space matrices would compare to the one having maxi-
mal dynamic range. For a less complex circuit, one pos-
sibility is the Orthonormal Ladder structure [4], which is
significantly sparser than the fully dense A matrix of the
dynamic-range optimal system. The advantage of using
this structure is its low sensitivity to coefficient mismatch.
After capacitance scaling, compared to the dynamic-range
optimal case, the Dynamic Range of our Morlet filter has
decreased by only 1.83dB. The normalized capacitance
distribution is given by (C1, ..., C10) = C′(0.142, 0.162, 0.110,

0.117, 0.086, 0.091, 0.073, 0.080, 0.073, 0.061) , where C ′ rep-
resents the unit-less value of the total capacitance when
expressed in F.

2.3 Low-power log-domain integrator

Log-domain filters fall into the category known as exter-
nally linear, internally nonlinear (ELIN) systems, charac-
terized by having a linear relation between input and out-
put signals, while internally the signals may be nonlinearly
related to the input and output. Log-domain integrators are
inherently companding, i.e., the circuit’s internal voltages
are compressed functions of the external input and output
currents. A simple bipolar multiple-input low-power log-
domain integrator [5] will be used as the basic building

Proceedings of ESSCIRC, Grenoble, France, 2005

324



block for the implementation of the state space equation
of a wavelet filter described in the previous section. This
log-domain integrator is shown in Fig.3 [5].

���

���
�� �� ����

��

�� ��

�� ��

�� �� ���

��

��

��

��

��

��

��

��

���

���

���	
��

���

��

���

���

���
�

�

���
	

	
( ) ( ) T

oin

T

oip

V

VV

ino
V

VV

ipo
o

i eIIeII
dt

dV
C

−−

⋅+−⋅+=

Figure 3: (a) The multiple-input low power log-domain
integrator, and (b) its symbol [5].

3. Circuit design

By applying a simple mapping to the linear state-space
equations, we can obtain the corresponding log-domain
circuit realization which employs the log-domain integra-
tor cell. Note that the implemented filter is a tenth order
filter. The block diagram of the log-domain implementa-
tion is illustrated in Fig.4, using the universal log-domain
cell symbol described in [5]. Note that each column of the
filter structure corresponds to a row in the state-space for-
mulation. The parameter Aij is implemented by the cor-
responding log-domain integrator with bias current IAij

,
defined by
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Figure 4: Complete State-space filter structure.

IAij
= Aij · 2πτ−1

2Q
CiVT (7)

where τ−1 and Q are, the inverse of the time constant and
the quality factor mentioned in Section 2., respectively,
and Ci represents the i-th capacitance of the filter. The
input section, as governed by the state-space vector B, can
be defined as the input LOG operator and is realized by
the first row from the top of Fig.4. The current IBi

is
related to the parameter Bi by

IBi
= Bi · 2πτ−1

2Q
CiVT (8)

In the orthonormal case, only one non-zero parameter of
the B vector is present (B10). Consequently, IBi

= IB .
Finally, in order to restore the overall system linearity one

should realize the weighted summation state with the cor-
responding EXP operators. The bias current vector ICj

,
which is controlled by the vector C, is defined as

ICj
= Cj · IB (9)

The normalizing current IA in Fig.4, which will control
the overall time constant of the filter, is implemented by

IA =
IAij

WAij

LAij

(10)

with WAij

LAij
=

IAij(1nA)

1nA , where WAij

LAij
are the aspect ra-

tios of the PMOS current mirrors and were defined for IA

equals to 1nA. The current IC is obtained in a similar way.

4. Measurement results

To validate the circuit principle, we have implemented the
log-domain state-space wavelet filter in IBM’s 0.18µm
BiCMOS IC process. A microphotograph of the circuit
is shown in Fig.5.
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Figure 5: Chip microphotograph. The die area is
0.89mm2 (0.78mm × 1.14mm) and the filter active area
is 0.28mm2 (0.35mm × 0.79mm).

The measurement setup is presented in Fig.6. As log-
domain filters process signals in the current domain, accu-
rate current measurements require linear transconductance
and transimpedance stages at the input and at the output,
respectively. These are implemented by a large resistor at
the input and by a Keithley 428 nanoamp transimpedance
amplifier at the output. However the transimpedance am-
plifier has a cutoff frequency up to 175kHz, depending on
the gain factor. To be able to measure beyond 100 kHz, a
transimpedance stage implemented by a low noise op amp
(LF 356) and a 1kΩ shunt feedback resistor is used. The
cutoff frequency of this stage is 10MHz. The circuit has
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Figure 6: Measurement setup.

been designed to operate from a 1.5V supply. Fig.7 shows
the measured impulse response of the wavelet filter and
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the respective frequency response for IA = IC = 4.3nA
and IB = 8.5nA, which corresponds to τ−1 = 22 · 103.
The transient response of the Morlet wavelet filter can be
compared with the simulated filter response to confirm the
performance of the log-domain filter.
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Figure 7: Measurement results (a) Measured and simu-
lated impulse response (b) Measured frequency response.

The total filter’s current consumption is 4.5µA with a
100pF total capacitance. The rms output current noise
is 87pA, resulting in a DR at the 1-dB compression point
of approximately 30dB. In addition, in order to verify the
performance of the whole wavelet system, one needs to
be able to scale and shift the wavelet base function. By
changing the values of the bias currents accordingly, one
can obtain a dyadic scale system, as illustrated in Fig.8.
The current IA has been scaled from 2nA to 8nA, result-
ing in a 3-scales wavelet system.

sµ200

sµ400

sµ100

54 kHz

27 kHz

14 kHz

Figure 8: Measured Impulse and frequency response for 3
scales.

Finally, in order to show that the same procedure can be
applied for medium frequency applications, we tuned the
frequency response of the filter by varying the bias current
over about three decades with center frequencies rang-
ing from 14kHz to 8.1MHz, while preserving the impulse
response waveform. Again, one can obtain the wavelet
scales around this frequency (i.e. 8.1 MHz) by scaling the

current, accordingly. The performance of the filter is sum-
marized in Table I.

625 ns

3.2 MHz

8.1 MHz

Time-domain Frequency-domain

Figure 9: Time and frequency response of the Morlet fil-
ter varying the bias current Ia to 1.4µA for medium fre-
quency operation.

Technology 0.18µm BiCMOS
Die area 0.89mm2

Active area 0.28mm2

Bias current Io = 4.3nA Io = 1.4µA
Total capacitance 100pF 100pF
Supply voltage 1.5V 1.6V
Center frequency (fc) 25kHz 8.1MHz
Power dissipation 6.75 µW 2.3mW
Dynamic Range (1-dB) 30 dB 30 dB
Noise current (rms) 87pA 64nA
Supply voltage range 1.2V - 1.8V 1.5V - 2.1V

Table 1: Performance per scale for two different operating
frequencies.

5. Conclusions

A novel procedure to implement wavelet bases using ana-
log circuitry was presented. Measurements demonstrated
an excellent approximation of the Morlet wavelet base.
The filter was optimized with respect to dynamic range.
Moreover, sensitivity and sparsity were also taken into ac-
count in the design of the filter. Hence, the filter was able
to meet the requirements imposed by a low-power envi-
ronment. The circuit operates from a 1.5-V supply and a
total bias current of 4.5µA. From the results obtained, we
deduced that this procedure could very well be used to ap-
proximate other wavelet bases as well and to implement
them on chip in an analog fashion using little power.
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