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standard cells or programmable building blocks. 
The application of the dynamic TL principle is not 

limited to  filters, i.e., linear differential equations (DE). 
The principle can also be applied to the structured de- 
sign of non-linear DES, e.g., oscillators [9,19], RMS-DC 
converters [13], PLLs [28] and even chaos. 

This paper aims to give an overview of the complete 
field of dynamic TL circuits. The emphasis is on struc- 
tured design methods and principles, rather than on spe- 
cific circuit implementations. The static and dynamic 
TL principles are reviewed in Sec. 11. Section I11 gives 
an overview of analysis methods. The general class of 
TL filters contains several different types. In Sec. IV, 
the correspondences and differences between log-domain, 
tanh, sinh and J-domain filters are treated. Section V 
presents several synthesis methods. Finally, an overview 
of state-of-the-art results that have been obtained thus 
far is presented in Sec. VI. 

I1 Design principles 
Translinear circuits can be divided into two major 
groups: static and dynamic TL circuits. The first group 
can be applied to realise a wide variety of linear and non- 
linear static transfer functions. All kinds of frequency- 
dependent functions can be implemented by circuits of 
the second group. The underlying principles of static 
and dynamic TL circuits are reviewed in this section. 

Static translinear principle Translinear circuits are 
based on the exponential relation between voltage and 
current, characteristic for the bipolar transistor and the 
MOS transistor in the weak inversion region . The collec- 
tor current IC of a bipolar transistor in the active region 
is given by: 

where all symbols have their usual meaning. 
The TL principle applies to loops of semiconductor 

junctions. A TL loop is characterised by an even number 
of junctions [15,29]. The number of devices with a clock-. 
wise orientation equals the number of counter-clockwise 
oriented devices. An example of a four-transistor TL 
loop is shown in Fig. 1. It is assumed that  the tran- 
sistors are somehow biased a t  the collector currents I1 
through 14. When all devices operate at the same tem- 
perature, this yields the familiar representation of TL 
loops in terms of products of currents: 
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Figure 1: A four-transistor translinear loop. 

This generic TL equation is the basis for a wide vari- 
ety of static electronic functions, which are theoretically 
temperature and process independent. 

D y n a m i c  translinear principle The static TL prin- 
ciple is limited to  frequency-independent transfer func- 
tions. By admitting capacitors in the TL loops, the T L  
principle can be generalised t o  include frequency depen- 
dent transfer functions. The term ‘Dynamic Translinear9 
was coined in [13] to describe the resulting class of cir- 
cuits. In contrast to  other names proposed in literature, 
such as ‘log-domain’ [4], ‘companding current-mode’ [5], 
‘exponential state-space’ [25], this term emphasises the 
TL nature of these circuits, which is a distinct advantage 
with respect to  structured analysis and synthesis. 

The dynamic TL principle can be explained with ref- 
erence to the sub-circuit shown in Fig. 2. Using the 
current-mode approach, this circuit is described in terms 
of the collector current IC and the capacitance Icap flow- 
ing through the capacitance C. Note that the dc voltage 
source VcaJt does not affect Icap. An expression for reap 
can be derived from the time derivative of (1) [12,29]: 

(3) 

where the dot represents differentiation with respect to  
time. 

Figure 2: Principle of dynamic translinear circuits. 

Equation (3) shows that  Ita? is a non-linear function 
of IC and its time derivative IC. More insight in (3)  is 
obtained by slightly rewriting it: 

CUTIC =Ic&. (4) 
This equation directly states the dynamic translinear 
principle: A time derivative of a current can be mapped 
onto a product of currents. At this point, the conven- 
tional TL principle comes into play, for, the product of 
currents on the right-hand side (RHS) of (4) can be re- 
alised very elegantly by means of this principle. Thus, 
the implementation of (part of) a DE becomes equivalent 
to the implementation of a product of currents. 

The dynamic T L  principle can be used t o  implement 
a wide variety of DES, describing signal processing func- 
tions. For example, filters are described by linear DES. 
Examples of non-linear DES are harmonic and chaotic 
oscillators, PLLs and RMS-DC converters. 

I11 Analysis 
In almost all publications on dynamic translinear cir- 
cuits, the emphasis has been on synthesis. Both struc- 
tured design methods and new circuit realisations have 
been presented. Although synthesis is more powerful 
than analysis, it must go together with a generally appli- 
cable analysis method in the same domain. Only when 
this condition is met, the full potentials of a synthesis 
method can be exploited. 

In this section, an overview is given of the analy- 
sis methods proposed in literature. It is shown that 
a current-mode TL approach yields a general analysis 
method, which is next elaborated to  facilitate state-space 
analysis of TL filters. 

Inverse t r ans fo rma t ion  In [4], Adams not only pre- 
sented a synthesis method, but also proposed an anal- 
ysis method. The first step is to write down the node 
equations from the large-signal ac model of the filter. 
These equations are multiplied by exponential functions 
to eliminate the isolated derivatives. Next, the interme- 
diate voltages have to be eliminated, such that a sin- 
gle equation results, expressing the relation between the 
compressed input and output voltage. Unfortunately, 
according to Adams, no systematic method might exist 
for this step [4]. In the last analysis step, a voltage- 
mode linear DE is obtained from this single equation by 
applying a logarithmic transformation; the inverse of the 
exponential transformation used during synthesis. 

Implicitly, Adams’ method has been applied in a num- 
ber of publications to  verify parts of transistor level 
implementations, however, never to  analyse a complete 
higher-order T L  filter. 

Small-signal ana lys i s  A very simple way to calculate 
the transfer function of a complete filter is to  analyse the 
small-signal equivalent circuit, see e.g. [7]. Since, by def- 
inition, a small-signal analysis results in a linear transfer 
function, this method yields the correct expression only 
when the dynamic T L  circuit under consideration is glob- 
ally linear and properly designed. The large-signal lin- 
earity cannot be proven and has to be verified in another 
way. Numerical simulations can provide some insight. 

Global t r ans l inea r  analysis Recently, a large-signal 
analysis method was presented by the authors [12]. This 
current-mode method is based on a TL approach and 
is believed to be completely general. It has been tested 
with success on all published log-domain, tanh and sinh 
filters. 

The key to the analysis of dynamic TL circuits is 
formed by the capacitance currents. Basically, the only 
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Figure 3: A ca acitance in (a part of) a translinear loop. 

terms of the bas -emitter voltages, which in turn are ex- 
pressed in terms of the collector currents flowing through 
these transistor . The capacitance current Icap can now 
be calculated f om the constitutive law by taking the 
derivative of V, with respect t o  time. Thus, a very 
simple equation is obtained [12]: i ( 5 )  
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This equation can be applied 
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the proposed analysis 
a second-order T L  
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State-space translinear analysis The state-space 
method can be used to  break down a high-order DE 
into a system of first-order DES. The method can also 
be used beneficially in TL filters to  limit intermediate 
expression swell, a disadvantage of the global analysis 
method described above, thus obtaining linear equations 
at an earlier stage of the analysis. 

In order to  find a state-space description of a filter, 
it is necessary to choose state variables. For TL filters, 
using the capacitance voltages as the state variables is 
very inconvenient. Since T L  filters are instantaneously 
companding, a better choice is to  use the currents ob- 
tained from an exponential voltage-to-current expansion 
of the capacitance voltages, applying the exponential law 
describing the bipolar transistor. 

As an example, regard the second-order low-pass But- 
terworth filter shown in Fig. 4 [30]. In this filter, ex- 

..,.. 

Figure 4: Sensing the states of a translinear filter. 

pansion of the voltage Vc, across capacitance C1 is al- 
ready implemented by means of transistor 9 6 .  There- 
fore, the collector current Iwt of Q 6  is chosen as the 
first state variable. Note that 95 merely acts as a dc 
voltage source. 

The voltage Vc, across the second capacitance Cs is 
not expanded within the filter, but this can be accom- 
plished by adding a fictitious sense transistor 911, as 
shown in Fig. 4. The collector current I11 of this tran- 
sistor is the second state variable to be used. 

The actual filter shown in Fig. 4 consists of two dis- 
junct T L  loops: Q 1 -  Q 6  and Q7 - 910. By adding the 
sense transistor Q11,  the first loop, &I - Q 6 ,  is broken 
into two coupled second-order loops, i.e. Q I  - Q 3 ,  QII 
and 911, Q4 - Q6. Now, the filter can be described by a 
set of three loop equations and two expressions for the 
capacitance currents IC, and IC? , given by: 

where I 7  is the collector current of Q7; an intermediate 
current. The factors of 2 in ( 7 )  and (8) are due to the 



doubled emitter areas of Q5 and &lo. All second-order 
effects have been neglected in this set of equations: 

Next, we have to  find expressions for IMlt and 111 in 
terms of Ii,, I,t and Il l .  An equation for I,t is found 
by eliminating Icl from (7) by applying (9). This yields: 

CUTIout = Io (4611 - I a t )  * (11) 

To find an expression for i l l ,  we first eliminate 17 from 
(6) and (8). From the resulting equation, the capacitance 
currents IC, and IC* can be eliminated using (9) and 
( l o ) ,  after the derivative IMlt has been eliminated from 
(9) by using (11). This yields the second equation of the 
state-space description: 

CUTIll = Io (Iz, - I&) 1 (12) 

Thus, a complete current-mode state-space descrip- 
tion of the TL filter shown in Fig. 4 is given by (1 1) and 
(12). 

IV log, tanh, sinh and J-domain circuits 
Within the general class of dynamic translinear circuits 
several different types of ESS filters have been proposed. 
Next to  the most prevalent class of log-domain filters, the 
two classes of tanh and sinh filters have been proposed 
by Frey [25]. The extension of the underlying principles 
of TL filters to  MOS transistors operating in the strong 
inversion region was proposed independently by Mulder 
et al. [31] and Eskiyerli e t  al. [32,33]. The resulting 
circuits are called J-domain filters. 

In this section, we describe the correspondences and 
differences between log-domain, tanh, sinh and J- 
domain filters. The characteristics of these classes can 
be derived from their generic output structures, which 
are depicted in Fig. 5. 

I y  'lDc+lo"> fcwJ&- 
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1 
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Figure 5: Generic output structures of a) log-domain, b) 
tanh, c) sinh, and d) J-domain filters. 

log-domain filters Most published dynamic TL cir- 
cuits are based on the single transistor output structure 
shown in Fig. 5(a), characteristic for the class of log- 
domain filters. The transfer function from the capaci- 
tance voltage Vcap to  the output current Imt is given by 
the well-known exponential law (1). 

The most important characteristic of a dynamic TL 
output structure is the current-mode expression for the 
capacitance current Icap. For log-domain filters, Icup is 
given by (3), where IC = IDC + Imt. As was shown in 
Sec. 11, a linear derivative i M l t  is obtained by multiplying 
Icap by IDC + L t .  

Typically, log-domain filters operate in class A. The 
actual ac signal I,t is superposed on a dc bias current 
IDC.  As a consequence, the output signal swing is lim- 
ited to I,t > -IDc. Note that this limitation is single 
sided, which is advantageous if a-symmetrical input wave 
forms have to be processed. This characteristic can be 
exploited to  enable class AB operation [5,26]. Using 
a class AB set-up, see Fig. 6, the dynamic range can 
be enlarged without increasing the quiescent power con- 
sumption. Using a current splitter, the input current 4, 
is divided into two currents Iinl and Iin2, which are both 
strictly positive, and related to Ii, by: Ii, = Iinl - Iin2. 
The current splitter impresses a constant geometric or 
harmonic mean on Iinl and Iin?. Next, Iinl and Izn2 
can be processed by two class A log-domain filters. 

I,", IO",, 
I 

spliner 10°C 

Figure 6: Set-up for class AB operation. 

tanh f i l ters  Instead of a single transistor in common- 
emitter configuration, the class of tanh filters is charac- 
terised by a differential pair output structure, shown in 
Fig. 5(b). The name of this class of filters is derived from 
the well-known hyperbolic tangent V - I  transfer function. 

The tail current of the differential pair is a dc cur- 
rent IDC,  and therefore, tanh filters also operate in 
class A. The output current I,t is the difference of the 
two collector currents. The output swing is limited to  
-IDC < I,t < IDC.  Since this interval is symmetrical, 
the class AB set-up shown in Fig. 6 cannot be applied to  
tanh filters. Alternatively, the dynamic range of a tanh 
filter can be enlarged using syllabic companding [34]. 

Using ( 5 ) ,  the capacitance current Icup is found to  be: 

A linear derivative Imt is obtained by multiplying this 
equation by ( I N  + I , t ) (hc - IMlt): 

2cuTIDCIout = I c a p ( I ~ c  + Imt)(IDC - IG-u~). 
(14) 

Comparing (4) and (14), we can see tha t  the RHS of 
(14) is third order, whereas the RHS of (4) is only second 
order. Consequently, in general, T L  loops of higher order 
are necessary to implement a tanh filter, resulting in a 
more complex circuit. 
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Exponential transformations Synthesis of TL fil- 
ters using exponential transformations was introduced 
by Adams in [4] and generalised to filters of arbitrary 
order by Fkey [6]. The design of a TL filter begins with 
a state-space filter description: 

i= AS'S BU, Y = cz+  DU, (17) 

where 5 = (21,. . . , z,)~ is the state vector, A, B ,  C and 
D are matrices, U is the input signal and Y the output 
signal. 

Next, the state vector P and the input signal U are 
transformed to  the new vector v' and input U using the 
exponential function [6]: 

2; = ev;JuT, U = IDceuIUT. (18) 

This procedure is only valid if both xi and U are strictly 
positive. This restriction is satisfied by adding a dc com- 
ponent to U and applying linear transformations to  (17), 
through trial-and-error, such that xi > 0 V i  in the result- 
ing state-space description [6] .  

Thus, a set of equations results describing the TL filter 
in term of voltages and exponential functions. These 
equations are interpreted as the nodal equations of the 
TL filter. The circuit implementation has to be derived 
directly, or possibly after some rearranging [25,35], from 
these equations. 

Next to the exponential function, compound exponen- 
tial functions like the hyperbolic tangent and hyperbolic 
sine function can be used to transform the state-space 
description [25,35]. 

Component substitution Another approach to  the 
design of TL filters is based on component substitution 
of prototype LC [8,36] or g,C filters [ lo ,  371. The gen- 
eral idea is to replace elements from the prototype filter 
by parts of TL loops. In [ lo ,  371, the transconductances 
are replaced by a single transistor and a level shift; the 
resistors are replaced by dc current sources; the capaci- 
tors remain the same. 

Application of these component substitution based 
synthesis methods is simple. Yet, an important disad- 
vantage seems that the designer cannot make any choices 
along the synthesis path. In general, for each LC or 
g,C prototype filter, exactly one TL filter results. Con- 
sequently, a designer has little control over the specifica- 
tions a TL filter has t o  meet. 

Translinear synthesis In [5], two integrators were de- 
signed using a current-mode TL approach. The under- 
lying method was generalised to  filters of arbitrary or- 
der in [38]. Whereas the previously described synthesis 
methods seem limited to the design of linear filters, the 
method presented in this section can also be applied to 
the structured design of non-linear dynamic functions. 
Another major advantage is that this method fit5 di- 
rectly onto the synthesis method for conventional TL 
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circuits described in [29]. Consequently, all existing the- 
ory and experience on static TL circuits can be employed 
in the design of dynamic TL circuits. 

Synthesis of a dynamic circuit, be it linear or non- 
linear, starts with a DE describing its function. Often, 
it is more convenient to  use a state-space description, 
which is mathematically equivalent. The structured syn- 
thesis method for dynamic TL circuits is illustrated here 
by the design of a second-order low-pass filter with a Q 
of two, described by: 

z + 2 / 2  + z = 2, (19) 

where x and z are the input and output signal, respec- 
tively, and the dot represents differentiation with respect 
to  the dimensionless time r. 

In the pure mathematical domain, equations are di- 
mensionless. However, as soon as we enter the electron- 
ics domain to find an implementation of the equation, we 
are bound to quantities having dimensions. In the case 
of TL circuits, all time-varying signals in the DE (input 
signal, output signal and tunable parameters) have to 
be transformed into currents. For (19 ) ,  z and z can be 
transformed into the currents 4, and Imt through the 
relations: x = Iin/Io, z = Imt/I,. The dimensionless 
time r has to be transformed into the time t with its 
usual dimension [SI, using the equivalence relation given 
by: 

The presence of the current Io in this expression explains 
the excellent linear tunability of TL filters. 

Using these transformations, (19) becomes: 

2c 2 "  u&&t + CUTIoIwt + 21,"Imt = 2I,"IZn. 

( 2 1 )  

Conventional TL circuits are described by multivariate 
polynomials, in which all variables are currents. The gap 
between these current-mode polynomials and the DE can 
be bridged by the introduction of capacitance currents. 
For, the dynamic TL principle states that  a derivative 
can be replaced by a product of currents. 

The capacitance currents can be introduced simply by 
defining them. To this end, the general equation of a 
TL capacitance current, given by ( 5 ) ,  can be used. This 
equation has two important characteristics. First, the 
denominators on the RHS are collector currents. This 
implies that these currents have to be strictly positive. 
Second, the numerators on the RHS are the time deriva- 
tives of the denominators. 

With these characteristics in mind, we can define the 
capacitance currents, one by one. As the capacitance 
currents will be used to  eliminate the derivatives from 
the DE, in the definitions of these currents, the deriva- 
tives present in the DE have to  be used. In the definition 

of the first capacitance current I c I ,  the currents with the 
highest order of derivative have to be accommodated. In 
( 2 1 ) ,  this is the output current Imt. A possible definition 
of IC* is given by: 

Note that this equation can be implemented using the 
substructure depicted in Fig. 2 ,  when IC = Imt. The de- 
nominator of (22) is strictly positive if the filter operates 
in class A. 

From (22), expressions can be obtained for Imt and 
for Imt .  IF the resulting equations are used to eliminate 
itmt and Imt from ( 2 1 ) ,  a first-order DE in Ic l  results: 

I& (2CU&, + 2I& + Ic,Io + 2 4  = 2 I 3 h  
(23) 

The same process is repeated for IC,,. the second ca- 
pacitance current introduced. Since IC,  is the only 
derivative in (23), Ic l  has to be present in the defini- 
tion of Ic2.  A possible definition is: 

(24) 

Using this equation t o  eliminate IC, from (23), a poly- 
nomial (a degenerate DE) is obtained: 

I a t  (Ic,(21c2 - 310) + 41c,Io + 21:) = 21zI+n. 
( 2 5 )  

From this point on, the synthesis theory for static T L  
circuits can be used [29] ,  since both sides of ( 2 5 )  are now 
described by a current-mode multivariant polynomial. 
The next synthesis step is TL decomposition. The poly- 
nomial has to be mapped on the loop equations given by 
( 2 ) .  For example, a possible parametric decomposition 
of ( 2 5 )  is given by: 

I , ~ ( ~ I ,  +IC& = I,"I,,, 
(26) 

(27) (21, + I c , ) (p  - Icz  + 310/2) = 4I:. 

The last synthesis step is biasing. The TL decompo- 
sition has to  be mapped on a T L  circuit topology and 
the correct collector currents have to be forced through 
the transistors. Biasing methods for bipolar all-NPN 
T L  topologies are presented in [29]. Additional biasing 
methods include the use of (vertical) PNPs, compound 
transistors or (simple) nullor implementations. If sub- 
threshold MOSTs are used, some additional possibilities 
are the application of the back gate [39] and operation 
in the triode region [40,41]. An all-NPN biasing scheme 
was designed for the parametric T L  decomposition given 
by ( 2 6 )  and (27). The resulting prototype circuit is de- 
picted in Fig. 7. After biasing, the prototype circuit can 
be analysed for second-order effects. At this stage, an 
analysis method in the same domain is indispensable. 
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best approach to face the dynamic range limitations, 
conventional integrated circuits are facing due to low- 
power, low-voltage and high-frequency demands. This 
field is receiving increasing interest and encouraging re- 
sults have been obtained thus far. The future will learn 
to what extend these results can be improved. 
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