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Abstract. In this paper, the design and measurements of a 1-volt class-AB instantaneous companding translinear

integrator are presented. The use of instantaneous companding and class-AB operation gives an improvement of

the dynamic range and a reduction of the power consumption. The proposed circuit uses only bipolar transistors

and one capacitor and is, therefore, very well suited for integrated implementation. Its unity-gain frequency can

easily be controlled by a current. Simulations and measurements of a semicustom realization, to be applied in a

hearing instrument, con®rm correct operation of the designed circuit. The translinear integrator operates from a

single supply voltage down to 0.95 V. The current consumption is less than 1.9 mA for an input current of 180 nA

( p). The dynamic range is better than 73 dB over a bandwidth of 8 kHz.
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1. Introduction

Today, portable electronic equipment becomes more

and more important. Therefore, analog circuits that

operate at low supply voltages and consume minimal

power, the low-voltage low-power circuits, have

gained much interest. An important operation in

electronics is the separation of desired signals from

undesired signals in the frequency domain: the

®ltering of signals. Integrators can be considered to

be basic building blocks for the realization of ®lter

structures. An integrator that is often used is the well-

known transconductance-C (gm-C) integrator. A

disadvantage of this integrator for use in low-voltage

low-power ®lters with a controllable transfer function

is that resistor values become too large for imple-

mentation in integrated circuits [1]. This can be

circumvented by using the principle of an instanta-

neous companding current-mode integrator

introduced by Seevinck in [2] and later thoroughly

investigated by Frey [3±12], Punzenberger and Enz

[13±27], Toumazou et al. [28±47], Roberts et al.

[48±53], Tsividis [54±58], Mulder and Serdijn [59±

80] and others [81,82]. The integrator introduced by

Seevinck uses both the current-mode approach [83]

and an instantaneous companding technique [84] to

improve the dynamic range in a low-voltage

environment. The instantaneous companding is

realized by using non-linear transfer functions in the

signal path. The circuit proposed here is a 1-volt class-

AB companding current-mode integrator. The advan-

tages of class-AB implementation, over class-A

implementation, are the further improvement of the

dynamic range and reduction of the power consump-

tion.

In the next section, we discuss the principle behind

the companding current-mode integrators (CCI's).

The designed integrator is discussed in Section 3.

Section 4 deals with the simulation results and

measurements of a semicustom realization of the

integrator, which has been optimized for use in a

hearing instrument.

2. Principle of Instantaneous Companding
Current-Mode Integrators

As a starting point, we consider the block diagram of

an instantaneous companding integrator, as intro-

duced by Seevinck [2]. See Fig. 1(a). The circuit

comprises four fundamental system blocks: a divider,

a linear time integrator, a block with an expanding

M9303 Kluwer Academic Publishers Analog Integrated Circuits and Signal Processing (ALOG) Tradespools Ltd., Frome, Somerset



transfer function F that converts the internal voltage

VC into the output current Iout, and a block d=dVC that

differentiates the output current Iout with respect to the

internal voltage VC. An expanding transfer function F
reduces the voltage swing of the internal voltage VC,

which is bene®cial in a low-voltage environment.

Since, in practice, the divider current Id is unipolar,

the divider consists of a two-quadrant divider that

divides the bipolar input current Iin by Id and produces

ID;out:

ID;out �
InIin

Id

�1�

with In a normalizing current.

The divider current Id is the output signal of the

differentiator, and therefore:

Id � Vn

dIout

dVC

�2�

with Vn a normalizing voltage.

Substituting (2) into (1) yields:

ID;out �
InIin

Vn
dIout

dVC

�3�

The integration is performed by a capacitor and

produces the internal voltage VC. The integration

current for the capacitor is the output current ID;out of

the divider and therefore ID;out must also be equal to:

ID;out � C
dVC

dt
�4�

with C the integration capacitance.

Combining (3) and (4) and applying the chain rule

yields:

dIout

dt
� In

VnC
Iin �5�

Integrating (5) gives the linear result:

Iout �
In

VnC

Z
Iindt �6�

Note that the overall input-output relation given by

(6) is completely independent of the expanding

transfer function F. Deviations of F from the intended

transfer function F have thereby no in¯uences on the

overall input-output relation. However, in the prac-

tical realization, the differentiator �d=dVC� will not be

implemented. Instead, a circuit will be implemented

that has a transfer function F0, which must be identical

to the derivative dF=dVC. Differences between the

implemented transfer function F0 and the derivative

dF=dVC will cause the overall input-output relation to

be an approximation of (6). The model that represents

the practical realization of a companding current-

mode integrator is depicted in Fig. 1(b).

3. The 1-Volt Class-AB Companding Current-
Mode Integrator

The basic structure of the proposed integrator is given

by the model depicted in Fig. 2.

The current splitter, the two one-quadrant dividers

and the subtractor form the two-quadrant divider as

depicted in Fig. 1. The current splitter splits the input

current Iin into two positive currents I1 and I2. These

currents can be now divided individually by the

divider current Id by using one-quadrant dividers. The

subtraction of the output currents ID;out1 and ID;out2 of
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Fig. 1. Principle model (a) and practical realization model (b) of an instantaneous companding integrator.

Fig. 2. Structure of the class-AB CCI.
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the one-quadrant dividers gives the output current

ID;out of the composed two-quadrant divider. The

integration of the current ID;out is realized by a single

capacitor and produces the internal (capacitor)

voltage VC. The advantage of using a single capacitor

for integration is that no matching of capacitors is

needed, as is the case in the class-AB circuit given by

Seevinck in [2]. The voltage buffer minimizes

interaction between the F/F0 circuit and the capacitor.

The expanding transfer function F is a hyperbolic-sine

function, because of the very well suited class-AB

implementation of this function, and the ease of

implementation of the (derivative) transfer function F0

(hyperbolic cosine).

The non-linear system blocks depicted in Fig. 2 are

very well suited for implementation in translinear

circuits. A discussion about translinear circuits can be

found in [85,86].

For an implementation with bipolar transistors, the

normalizing voltage Vn in (2) will be equal to the

thermal voltage VT �� kT=q� and the overall input-

output relation (6) becomes:

Iout �
In

VTC

Z
Iindt �7�

Note that the integrator time constant

t �� VTC=In� can be controlled by the current In

and that it becomes independent of temperature if In is

made proportional to the absolute temperature

(PTAT).

The implementation of the individual system

blocks as depicted in Fig. 2 is discussed in the

following subsections.

3.1. The Current Splitter

For a class-AB two-quadrant divider composed with

two one-quadrant dividers, the bipolar input current

Iin must be decomposed into two positive currents, I1

and I2, for separate processing. This can be realized

with a current splitter. A current splitter, very well

suited to implement in a translinear circuit, is the

geometric-mean current splitter, which produces the

two positive output currents I1;2:

I1;2 �+
Iin

2
�

���������������������
Iin

2

� �2

�I2
q

s
�8�

with Iq the quiescent current of I1;2.

This equation can be realized by implementing the

following two equations:

Iin � I1 ÿ I2 �9�
I2
q � I1 ? I2 �10�

The basic implementation of the designed current

splitter is depicted in Fig. 3(a).

The translinear loop comprising transistors Q1

through Q4 implements a multiplier to realize the

operation given by (10). The output current of the
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Fig. 3. Basic (a) and practical implementation (b) of the current splitter.
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multiplier �I2� is fed back to the input by a current

mirror, to produce the difference of currents as given

by (9). The voltage source Vshift1 is necessary to

ensure that the emitter voltages of Q2,3 are always

positive. Note that this voltage source has no effect on

the translinear loop. A convenient value for Vshift1 is

200 mV. The nullor N1 enables the current I1 to ¯ow

into the collector of Q4 and make it an input transistor

of the multiplier. A practical implementation of the

nullor N1 and the voltage source Vref1 is the emitter

follower Q5, as depicted in Fig. 3(b).

A disadvantage of the circuit depicted in Fig. 3(b) is

that bias current Ibias, if set to a ®xed value, must be

relatively large �Ibias4Iq � IC;Q2� and, as a conse-

quence, will largely contribute to the quiescent supply

current consumption. A solution for this problem is the

replacement of the current source Ibias by the circuit

comprising transistors Q6,7,9 and the current source

3Iq in the ®nal implementation of the current splitter as

depicted in Fig. 4. The current mirror comprising

transistors Q8,9 feeds the collector current of Q2 to the

input of the current mirror comprising transistors

Q6,7, and therefore the current through Q5 will be

equal to 2Iq, which can be much smaller than Ibias.

3.2. The Dividers

Once the bipolar input current Iin is decomposed into

two positive currents I1;2, such that the difference of

these currents equals the input current, the two-

quadrant dividing of the (bipolar) input current Iin can

now be performed by the individual dividing of the

currents I1;2 by the (unipolar) divider current Id, by

means of two one-quadrant dividers. The divider

output current ID;out is formed by a simple subtraction

of the output currents ID;out1 and ID;out2 of the one-

quadrant dividers according to:

ID;out �
ÿ IinIn

Id

� I2In

Id

ÿ I1In

Id

� ID;out2 ÿ ID;out1 �11�

The divider output currents ID;out1;2 equal

ID;out1;2 �
InI1;2

Id

�12�

and can be simply realized by a translinear divider.

The basic implementation of the realized one-

quadrant divider is depicted in Fig. 5(a). The

translinear loop comprising transistors Q12±Q15

implements a divider to realize the operation given

by (12). The voltage source Vshift2 is necessary to

ensure that the base voltages of Q13,14 are always

positive. Again, 200 mV is a convenient value. The

nullor N2 enables the current In to ¯ow into the

collector of Q12 and make it an input transistor of the

divider. A practical implementation of the nullor N2

and the voltage source Vref2 is the emitter follower

Q16, as depicted in Fig. 5(b).

The implementation of the differential two-

quadrant divider is depicted in Fig. 6. Note that in

(11) the output currents ID;out1;2 are exchanged. The

reason for this is to have a PNP current mirror (Q10,11

and Q17,18) in both signal paths, from splitter output

to divider output, instead of two current mirrors in one

path and none in the other path. This improves the

linearity of the composed two-quadrant divider. The

polarity will be corrected in the implementation of F.
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Fig. 5. Basic (a) and practical (b) implementation of the one-

quadrant divider.

Fig. 4. The ®nal implementation of the current splitter.
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3.3. The Integrator/Buffer

The current ID;out is integrated over time to produce

the internal voltage VC. The integration is performed

by a single capacitor C. To minimize the interaction

between the F/F0 circuit and the capacitor, a voltage

buffer is implemented. The principle of the integrator/

buffer is depicted in Fig. 7(a). Ideally, the buffering is

performed by the nullor N3. The level-shifting

between the input and the output of the buffer,

represented by the voltage source Vshift3, is necessary

to avoid saturation of transistor Q15b of the divider

circuit given in Fig. 6.

The practical implementation of the nullor N3 and

the voltage source Vshift3 is depicted in Fig. 7(b). The

nullor is implemented by the transistors Q19,20 in

common-emitter con®guration. The output transistor

Q20 must be able to sink the input current of the F/F0

circuitry. The level-shift voltage source Vshift3 is

realized by the base-emitter voltage of transistor Q19.

3.4. The F/F0 Circuitry

The transfer function F must be an expanding

function, to provide the companding in the circuit.

Compared with a linear transfer function, expanding

results in a reduced swing of the capacitor voltage VC

for the same swing of the output current Iout. This is

bene®cial in a low-voltage environment. Which

function F is suitable depends on the operation

mode (class A or class AB), and on the ease of

implementation of F and its derivative F0. An easy-to-

implement transfer function in electronics is the

exponentional function describing the behavior of a

bipolar transistor or a MOSFET in weak inversion. An

advantage of the exponentional function is that the

derivative is also an exponentional function and,

therefore, it is also easy to implement. For this reason,

this function is at the base of most of the bipolar or

weak-inversion log-domain (translinear) ®lters. In the

class-AB operated circuit presented here, bipolar

transistors are used. In class-AB operation, the

expanding function F must be a bipolar function. A

natural choice for the function F is the hyperbolic-sine

function, see, e.g., [8], and, as a consequence, the

(derivative) function F0 becomes the hyperbolic-

cosine function. Therefore, Iout and Id become:

Iout � ÿ 2Ir sinh
Vin

VT

� �
� Ir exp ÿVin

VT

� �
ÿ exp

Vin

VT

� �� �
� �Iÿ� ÿ �I�� �13�

Id � 2Ir cosh
Vin

VT

� �
� Ir exp ÿVin

VT

� �
� exp

Vin

VT

� �� �
� �Iÿ� � �I�� �14�

with Vin � V0C ÿ Vshift4 and Ir a reference current.

Note that Iout is equal to the negative, instead of the

positive, hyperbolic-sine function. This corrects the
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Fig. 6. The implementation of the differential two-quadrant

divider.

Fig. 7. Principle (a) and implementation (b) of the integrator/

buffer.
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exchanging of ID;out1;2, as mentioned before. The

implementations of the hyperbolic-sine function �F�
and the hyperbolic-cosine function �F0� are combined

in one circuit, as depicted in Fig. 8. This combination

is also bene®cial for the matching of the transfer

function F0 and the derivative dF=dV0C, because now

the same currents I� and Iÿ are used for realizing

the current Iout as well as the current Id.

The two loops comprising the transistors Q21,22

and Q23,24 convert the input voltage Vin

Vin �� V0C ÿ Vshift4� into the currents Iÿ and I� ,

respectively:

�I�� � Ir exp
Vin

VT

� �
�15�

�Iÿ� � Ir exp ÿVin

VT

� �
�16�

The hyperbolic-sine function �F�, which produces

the output current Iout, is realized by a simple

subtraction of the currents I� and Iÿ as given in

(13). The hyperbolic-cosine function �F0�, which

produces the divider current Id, is realized by a

simple summation of the currents I� and Iÿ as

given in (14). The voltage source Vshift4 is necessary to

ensure that the emitter voltages of Q22,23 are always

positive. Once again, 200 mV is a convenient value.

The output current ÿ Iout is added to easily enclose

the integrator in a unity-feedback con®guration by

connecting the ÿ Iout output to the input of the

integrator, which results in a ®rst-order low-pass ®lter.

3.5. Overall Design

Now that all the system blocks have been designed at

circuit level, the subcircuits can be linked together to

form the integrator as depicted in Fig. 2. The biasing

of the integrator is ensured by enclosing it in a

feedback con®guration, as mentioned before. This

results in a ®rst-order low-pass ®lter that must, for use

in a hearing instrument, ful®ll the following require-

ments [1] (Table 1):

For simulation and measurement purposes, the

biasing current sources Iq, Ir, Ibias1 and Ibias2 are

realized by simple current mirrors and high-valued

resistors. The control current In is realized with a

PTAT current source.

4. Simulation and Measurement Results

4.1. Simulation Results

The integrator has been simulated using PSPICE and

transistor models of the Philips BIMOS L00422

process. Typical (bipolar) transistor parameters

are: IS;NPN&50 aA, hfe;NPN&180, fT;NPN&3 GHz,

IS;LPNP&60 aA, hfe;LPNP&90 and fT;LPNP&16 MHz.

Simulations of the designed circuit con®rm correct

operation, according to the above-listed requirements,

for sinusoidal input signals, with V� � 1 V,

Iq � Ir � Ibias1;2 � 45 nA, Vshift1;2;4 � 200 mV and

C � 100 pF. The results of the simulations are given

in Table 2.

4.2. Measurement Results

To verify the integrator operation in practice, a semi-

custom version of the active circuitry of the complete

®lter has been integrated in our in-house 2-mm, 7-GHz

process, fabricated at the Delft Institute of

Microelectronics and Submicron Technology.

Typical transistor parameters are: IS;NPN&14 aA,

hfe;NPN&100, fT;NPN&7 GHz, IS;LPNP&8 aA,

hfe;LPNP&80 and fT;LPNP&40 MHz. Iq, Ir and Ibias2

are set to the value of 45 nA. Ibias1 is set to 135 nA,

instead of 45 nA, to avoid instability. The capacitor C
�� 100 pF� is connected externally. The voltage

sources Vshift1;2;4 are implemented by a resistive

voltage divider set to 200 mV. The measurement

results are given in Table 3 and are in good agreement
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Fig. 8. The implementation of the F/F0 transfer functions.
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Table 1. Required speci®cations of the translinear integrator.

Quantity Value Comment

Supply voltage (V� ) V

Current consumption 5 5 mA Iin;max � 180 nA (p)

Cutoff frequency �fc� range 1.6 kHz±8 kHz controllable

Dynamic range 4 68 dB Hz±8 kHz

Total harmonic distortion 5 2% f� 1 kHz, fc � 1:6 kHz; Iin5130 nA (p)

5 7% f� 1 kHz, fc � 1:6 kHz; Iin4130 nA (p)

Table 2. Simulation results of the class-AB translinear integrator.

Quantity Value Comment

Minimal supply voltage 0.94 V

Supply current 1.7 mA Iin � 180 nA (p)

Quiescent supply current 1.4 mA

Cutoff frequency range 1 kHz±4 8 kHz

Total harmonic distortion 1.1% f = 1 kHz, fc � 1:6 kHz, Iin � 180 nA (p)

Dynamic range 77 dB 100 Hz±8 kHz

Table 3. Measurement results of the class-AB translinear integrator.

Quantity Value Comment

Minimal supply voltage 0.95 V

Supply current 1.9mA Iin � 180 nA (p)

Quiescent supply current 1.6mA

Cutoff frequency range 1 kHz±4 8 kHz

Total harmonic distortion 1.2% f� kHz, fc � 1:6 kHz, Iin � 100 nA (p)

2.8% Iin � 200 nA (p)

4.1% Iin � 300 nA (p)

5.5% Iin � 400 nA (p)

7.0% Iin � 500 nA (p)

Dynamic range 73 dB 100 Hz±8 kHz

Table 4. Class-AB translinear ®lters.

[27] [26] [this work] [65] [79]

Process 2m BiCMOS 1 m BiCMOS Bipolar Bipolar Bread-board

Filter LPF, 3 LPF, 3 LPF, 1 APF, 2 LPF, 1

fc [Hz] 10 k±100 k 10 k±15 M 1 k±8 k 155 k 1.6 k

DR [dB] Ð 65 73 62 76

Total C [pF] 500 59 100 80 100

Power [W] 180m 65 m 2m 2m 1m
Supply [V] 4 1.2 1 1.8 3.3
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with the simulations, despite the fact another process

is used.

4.3. Comparison with Other Implementations

Many skilfully designed class-AB translinear inte-

grators have been presented in literature. Only few of

them have been actually experimentally veri®ed. To

the authors' knowledge, to date, this amounts to a

total of four different class-AB translinear ®lter

designs [26,27,65,79]. The speci®cations of these

®lters and the here presented ®lter are summarized in

Table 4.

The conclusions that can be drawn from this table

speak for themselves and are thus left to the reader.

5. Conclusions

In this paper, a new implementation of a class-AB

operated translinear integrator has been presented.

The integrator operates from a single supply voltage

down to 0.95 V. The total current consumption is less

than 1.9 mA for an input current of 180 nA ( p). The

unity-gain frequency of the integrator can easily be

controlled by a current. The integrator makes use of a

single grounded capacitor and, therefore, matching of

capacitors is not needed. The results of simulation and

measurements of the integrator meets the required

speci®cations for the application in hearing instru-

ments.
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