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Abstract. This paper addresses the non-linear noise and dynamic-range properties of bipolar and MOS (both in

weak and in strong inversion) translinear integrators, following a systematic top-down approach. Several design

principles to achieve an optimal dynamic range are derived. A qualitative comparison of a bipolar or weak-

inversion class-AB translinear integrator and the well-known linear gm ÿ C integrator reveals that the former is an

interesting candidate, especially for low-voltage and/or low-power operation. As an example, a +1.65-V bipolar

translinear integrator is presented that makes dynamic-range optimization possible by adjusting just one bias

current. Its application in an audio ®lter yields a 63-dB dynamic range and a virtual dynamic range of 76 dB, while

the current consumption can be as low as 310 nA.
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1. Introduction

Recently, both a current-mode analysis method and a

synthesis method for dynamic translinear circuits

were proposed by the authors [1±3]. The dynamic

translinear principle can be regarded as a general-

ization of the well-known ``static'' translinear

principle, formulated by Gilbert in 1975 [4].

An important subclass of dynamic translinear

circuits is the class of ``translinear ®lters'', also

called ``log-domain'' or ``exponential state-space''

®lters, which were originally introduced by Adams in

1979 [5]. Although not recognized then, this was

actually the ®rst time a ®rst-order linear differential

equation was implemented using translinear circuit

techniques. In 1990, Seevinck introduced a ``com-

panding current-mode integrator'' [6] and since then

the principle of translinear ®ltering has been

extensively studied by Frey, see, e.g. [7],

Punzenberger and Enz, see e.g. [8], Toumazou et al.

see, e.g. [9], Roberts et al. [10], Tsividis, see, e.g. [11]

and Mulder and Serdijn, see e.g. [12,13].

Using the dynamic translinear principle, it is

possible to implement almost every linear or non-

linear differential equation, using transistors and

capacitors only. See, e.g. [14,15]. Hence, a high

functional density can be obtained, whereas the

absence of large resistors makes them especially

interesting for ultra-low-power applications [16].

Apart from this, dynamic translinear circuits also

exhibit other interesting properties.

1. Owing to the exponential behavior of a bipolar

transistor or a MOS transistor in its subthreshold

region, the voltages in dynamic translinear circuits

are logarithmically related to the currents. As a

result, the voltage excursions are small, typically

only a few tens of millivolts. This is bene®cial in a

low-voltage environment.

2. Due to these small voltage swings, the effects of

parasitic capacitances are reduced. This facilitates

relatively wide bandwidth operation [17,18].

3. Dynamic translinear circuits are easily controlled

over a wide range of several parameters, such as

gain, frequency or threshold. This increases their

designability and makes them attractive to be

implemented as standard cells or programmable

building blocks.

4. In dynamic translinear circuits, transistors are used

either as elements of the translinear loops or as

nullors, to provide additional loop gain or to



counteract the transistor second-order effects.

Hence, in an IC process only three types of

components are required:
* transistors that are well matched and have an

accurate exponential transfer over a wide range

of transistor current,
* transistors with a large gain, also at higher

frequencies, and
* capacitors.

In this paper, the dynamic range properties of

translinear integrators, which can be considered to be

a basic building block of translinear ®lters, are

investigated at function level. Section 2 highlights

the key idea behind companding integrators, of which

translinear integrators form an important subclass. In

Section 3, the effect of possible noise sources on the

output noise is analyzed and several design principles

for optimal-dynamic-range translinear integrators are

formulated. As an example, in Section 4, a + 1.65-V

bipolar translinear integrator is presented that makes

dynamic range optimization possible by adjusting just

one bias current.

2. Companding Integrators

As a starting point, let us consider the block diagram

of a companding integrator, as mentioned by Seevinck

[6], comprising a divider, a linear time integrator, an

expander block F that generates the output signal y
from some internal quantity v, y � F�v�, and a block

F0 that generates the derivative of the output signal y
with respect to v. See Fig. 1. This integrator can be

considered to be an implementation of a ®rst-order

linear differential equation x�t� � dy�t�=dt by

applying the chain rule:

x�t� � dy�t�
dt
� dy�t�

dv�t� ?
dv�t�

dt
� dF�v�t��

dv�t� ?
dv�t�

dt
�1�

Note that this differential equation is completely

independent of v�t�. Moreover, if F is an expanding

function, the variation of v for a given variation of x
will be less than for a linear F.

Hence, with regard to the overall transfer function,

the only demands made on F and F0 are that both

functions are integratable and that F is expanding.

Therefore, the exact implementations of F and F0 must

be based on other important design aspects, such as

dynamic range, bandwidth and power ef®ciency, all

being major design aspects in a low-voltage low-

power environment.

3. Dynamic Range

To gain insight into the dynamic range of this

companding integrator, several additive uncorrelated,

possibly non-stationary, noise sources from real

Gaussian random processes with zero mean, i.e.

having a ¯at spectral density, are assumed to be

present, as indicated in Fig. 2.

In the presence of these noise sources, the output

signal of the companding integrator becomes

y � F�v� � e4 �2�
Its time derivative, applying the chain-rule, becomes

dy

dt
� de4

dt
� dF�v�

dv
?

dv

dt
�3�

Since

dF�v�
dv
� y0 ÿ e3 and �4�

dv

dt
� e2 �

x� e1

y0
�5�

Fig. 1. General block diagram of a companding integrator.

Fig. 2. The companding integrator including its (additive) noise

sources.
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it follows that

dy

dt
� de4

dt
� �y0 ÿ e3�

x� e1

y0
� e2

� �
�6�

� x� e1 � e2 ? y0 ÿ e3 ?
x

y0
� de4

dt
ÿ e1e3

y0
ÿ e2e3 �7�

Note that e1 and e4 are simply added to x and y,

respectively, which is obvious since e1 and e4 are

situated directly at the input and output of the

integrator, respectively.

If the noise6 noise terms and the signal6 noise

terms of second and higher order in en�n [ �1; 4�� are

considered to be of minor importance, the latter two

terms in (7) can be neglected and the term y0 may be

considered to be noise-free.

Using

y0 � F0�v� � dF

dv
�v� � dF

dv
�Fÿ1�y��

� dF

dv
Fÿ1

Z t

x�t�dt
� �� � �8�

it follows that

dy

dt
� x� e1 � e2 ? G1�x; t� ÿ e3 ? G2�x; t� �

de4

dt
�9�

with

G1�x; t� �
dF

dv
Fÿ1

Z t

x�t�dt
� �� �

and �10�

G2�x; t� �
x�t�

dF
dv Fÿ1

R t
x�t�dtÿ �� � � x�t�

G1�x; t�
�11�

Assuming x, e1; e2; e3 and e4 to be uncorrelated, the

autocorrelation function of dy/dt becomes

Rdy=dt�t; t� � Rx�t; t�
� Re1

�t; t�
� Ee2; x

fe2�t� ? G1�x�t�; t� ? e2�t� t�
? G1�x�t� t�; t� t�g
� Ee3; x

�e3�t� ? G2�x�t�; t� ? e3�t� t�
? G2�x�t� t�; t� t��
� Rde4=dt�t� �12�

� Rx�t; t�
� Re1

�t; t�
� Ee2

�e2�t� ? e2�t� t�� ? ExfG1�x�t�; t�
? G1�x�t� t�; t� t�g
� Ee3

�e3�t� ? e3�t� t�� ? ExfG2�x�t�; t�
? G2�x�t� t�; t� t�g
� Rde4=dt�t� �13�
� Rx�t; t�
� Re1

�t; t�
� Re2

�t; t� ? RG1
�t; t�

� Re3
�t; t� ? RG2

�t; t�
� Rde4=dt�t� �14�

E�� ? �� being the mathematical expectation of � ? �.
According to the Wiener-Khintchine theorem for

non-stationary processes [19], a power density

spectrum of dy/dt can be calculated from the

autocorrelation function of dy/dt, which yields:

Sdy=dt�o; t� � Sx�o; t� � Se1
�o; t�

� Se2
�o; t�*SG1

�o; t�

� Se3
�o; t�*SG2

�o; t�

� Sde4=dt�o; t� �15�

Assuming en�n [ �1; 4�� to have a white spectrum,

which is true for the thermal noise generated by a

MOS transistor in strong inversion and for the shot

noise of a bipolar or weak-inversion MOS transistor,

Sen
�o; t� � Sen

�t� are functions of time only and the

above expression for Sdy=dt�o; t� simpli®es to

Sdy=dt�o; t� � Sx�o; t�

� Se1
�t� � Se2

�t�
2p

Z ?

0

SG1
�z; t�dz

� Se3
�t�

2p

Z ?

0

SG2
�z; t�dz

� Sde4=dt�o; t� �16�
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� Sx�o; t�
� Se1

�t� � Se2
�t� ? Ex�G2

1�x; t��

� Se3
�t� ? Ex�G2

2�x; t�� � Sde4=dt�o; t�
�17�

Since

y �
Z

dy

dt
dt and thus �18�

Sy�o; t� � Sdy=dt�o; t� ?
1

o2
�19�

we ®nally end up with

Sy�o; t� � Sx�o; t� ?
1

o2
� Se1

�t� ? 1

o2

� Se2
�t� ? Ex�G2

1�x; t��
o2

� Se3
�t� ? Ex�G2

2�x; t��
o2

� Se4
�t�

�20�

Assuming that the (single-sided) bandwidth of

interest ranges from o1 to o2, it follows that the total

(instantaneous) signal power at the output of the

integrator equals

PS�t� �
1

2p

Z o2

o1

Sx�o; t� ?
1

o2
do �21�

while the total (instantaneous) noise power at the

output of the integrator equals

PN�t� �
1

2p

Z o2

o1

Se1
�t�

o2
� Se2

�t� ? Ex G2
1�x; t�� �
o2

�

�Se3
�t� ? Ex�G2

2
�x;t��

o2 � Se4
�t�gdo �22�

Hence, the average signal power at the output of the

integrator equals

PS � lim
T??

1

T

Z T=2

ÿT=2

PS�t�dt �23�

while the total average noise power at the output of

the integrator equals

PN � lim
T??

1

T

Z T=2

ÿT=2

PN�t�dt �24�

The dynamic range of a circuit is de®ned as the

ratio of the maximal and the minimal signal it can

handle at the same time. The maximal signal that can

be handled is usually determined by signal-dependent

systematic errors that arise from non-linear distortion,

such as weak distortion and clipping distortion. The

minimal signal that can be handled is determined by

the noise with which the signal is contaminated. The

dynamic range of a circuit, therefore, corresponds to

the maximal signal-to-noise ratio at the output of this

circuit.

Note the difference between this de®nition of

dynamic range and another commonly used de®nition

of dynamic range, which equals the ratio of the

maximal signal a circuit can handle and the noise the

circuit produces when there is no signal applied. In the

linear domain, i.e. when all transfer functions are

linear and the noise sources are stationary, both

de®nitions produce the same result. In the translinear

domain, however, both de®nitions may result in

considerably different values. For this reason we

adopt the term ``virtual dynamic range'' for the latter

de®nition. Often, the virtual dynamic range is larger

than the actual dynamic range.

From (23) and (24) it follows for the signal-to-

noise ratio at the output of the integrator:

SNR � PS

PN

� limT??
1
T PS�t�dt

limT??
1
T

R T=2

ÿT=2
PN�t�dt

�25�

Hence, we can draw the following conclusions: in

order to maximize the dynamic range of the complete

integrator,

* PS must be maximal,

* limT??
1
T

R T=2

ÿT=2
Sen
�t�dt must be minimal, and

* limT??
1
T

R T=2

ÿT=2
fSe2
�t� ? Ex�G2

1�x; t��
� Se3

�t� ? Ex�G2
2�x; t��gdt must be minimal.

In practice, the average noise power of the various
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noise sources can be minimized by choosing current

to be the information-carrying quantity insofar as

possible and by operating the various subcircuits in

class AB [17]. Class-AB operation also extends the

dynamic range at the upper side for a given average

power consumption.

Further, using

G2
2�x; t� �

x2�t�
G2

1�x; t�
�26�

the latter condition can be written as:

lim
T??

1

T

Z T=2

ÿT=2

(
Se2
�t� ? Ex�G2

1�x; t��

� Se3
�t� ? Ex

x2�t�
G2

1
�x;t�

h i)
dt �27�

must be minimal.

As G1�x; t� appears in the numerator as well as in

the denominator of (27), for each input signal x an

optimal G1�x; t� and thus an optimal expanding

function F can be found. Using a capacitor as a

linear time integrator and the (static) translinear

principle to implement the divider function, x, dy/dv,

dv/dt and y become currents and, hence, F becomes an

expanding transconductor. To the authors' knowledge

no (static) transfer functions that are applicable have

been reported other than:
* an exponential transconductor,
* a hyperbolic-sine transconductor,
* a quadratic transconductor, or
* a linear transconductor.

These transconductors and their impact on the

dynamic range of the translinear integrator are

discussed in the next paragraphs.

Note that the use of a linear transconductor results

in a translinear integrator that is also internally linear

and, therefore, not companding. In this case the

translinear integrator simpli®es to the well-known

gm ÿ C integrator. It is included here merely to serve

as a reference.

Also note that another popular transconductor,

namely the bipolar differential pair is not suited for

our purposes, since it implements a tanh function,

which is also not expanding. Yet, it has been

suggested in [20].

The exponential transconductor. One candidate for

the expanding transconductor is the exponential

transfer function of a single (or compound) bipolar

transistor or MOS transistor in weak inversion:

F�v� � Iref exp�v=Vref� �28�
Iref and Vref both being constants. See Fig. 3a. Since its

derivative with respect to v is easily implemented

�dF=dv � F�v�=Vref�, this function is at the base of

most of the bipolar or weak-inversion class-A (log-

domain) translinear ®lters.

Now suppose: x�t� � Ao0 cos�o0t�, a sinusoidal

with amplitude Ao0 and frequency o0. Since

y�t� � R t
x�t�dt and y(t) must be unipolar (class-A),

y(t) can be written as: y�t� � A�a� sin�o0t��, with a >

1. If we further, in order to come to a qualitative

comparison, assume that Se2
�t� and Se3

�t� are

constants, denoted by Se2
and Se3

, then the average

noise power density spectrum resulting from e2 and e3,

(27), reduces to:

Se2
? Ex�G2

1�x; t�� � Se3
? Ex

x2

G2
1�x; t�

� �
�29�

which equals

Se2
?
o0

2p

Z p=o0

ÿp=o0

G2
1�x; t�dt� Se3

?
o0

2p

Z p=o0

ÿp=o0

x2

G2
1�x; t�

dt

�30�
which, in turn, simpli®es to:

Se2
?

A2�2a2 � 1�
2V2

ref

� Se3
? V2

refo
2
0

aÿ
�������������
a2 ÿ 1
p�������������
a2 ÿ 1
p �31�

� Se2
?
gexp

V2
ref

� Se3
? V2

refo
2
0dexp �32�

g and d are the ``noise-multiplication factors'' and

will also be derived for the other three transconductors

to compare the noise performance of the four

translinear integrators with each other.

The hyperbolic-sine transconductor. Another can-

didate for the expanding transconductor is the

hyperbolic-sine transfer function of a bipolar or

weak-inversion four-transistor translinear class-AB

output stage:

F�v� � 2Iref sinh�v=Vref�
� Iref �exp�v=Vref� ÿ exp�ÿv=Vref�� �33�

See Fig. 3b. Its derivative with respect to v is also

easily implemented:
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dF=dv � 2
Iref

Vref

cosh�v=Vref�

� Iref

Vref

�exp�v=Vref� � exp�ÿv=Vref�� �34�

The hyperbolic-sine function is at the base of most of

the bipolar or weak-inversion class-AB translinear

®lters.

Following the same procedure as above, only

now with a bipolar (class-AB) output signal

y�t� � A sin�o0t�, the average noise power density

spectrum resulting from e2 and e3, (27), becomes

Se2
?

A2 � 8I2
ref

2V2
ref

� Se3
? V2

refo
2
0

�������������������
A2 � 4I2

ref

p ÿ 2Iref

2Iref

�35�

� Se2
?
gsinh

V2
ref

� Se3
? V2

refo
2
0dsinh �36�

The quadratic transconductor. Using MOS transis-

tors operating in their strong inversion region, a

possible expanding transconductor is the quadratic

transfer function of a single or compound transistor:

F�v� � Iref�1� v=Vref�2 �37�

for v4ÿ Vref . See Fig. 3c. Its derivative with respect

to v is also easily implemented:

Fig. 3. Four transconductors comprising only transistors.

228 W. A. Serdijn et al.



dF=dv � 2
Iref

Vref

�1� v=Vref� �38�

The quadratic function is at the base of the class-A

H -domain integrators described in [12,21].

Following the same procedure as for the exponen-

tial transconductor, the average noise power density

spectrum resulting from e2 and e3, (27), becomes

Se2
?

4AaIref

V2
ref

� Se3
? V2

refo
2
0

A aÿ
�������������
a2 ÿ 1
p� �

4Iref

�39�

� Se2
?
gquad

V2
ref

� Se3
? V2

refo
2
0dquad �40�

The linear transconductor. A linear transistor-only

transconductor stems from, for example, a strong-

inversion four-transistor class-AB output stage, as

introduced by Bult in [22]:

F�v� � Iref ��1� v=Vref�2 ÿ �1ÿ v=Vref�2�
� 4Irefv=Vref

�41�

See Fig. 3d. Its derivative with respect to v equals

4Iref=Vref , a constant.

Following the same procedure as for the hyperbolic-

sine transconductor, the average noise power density

spectrum resulting from e2 and e3, (27), becomes

Se2
?

16I2
ref

V2
ref

� Se3
? V2

refo
2
0

A2

32I2
ref

�42�

� Se2
?
glin

V2
ref

� Se3
? V2

refo
2
0dlin �43�

A comparison. Now that the in¯uence of the various

noise sources on the integrator's output signal is

knownÐe1 and e4 are simply added to x and y,

respectively, and, therefore, their noise contributions

are not in¯uenced by the transconductor choiceÐ, the

four transconductors can be compared with respect to

their in¯uence on the average noise power density

spectrum resulting from e2 and e3, according to (31),

(35), (39) and (42).

Table 1 summarizes the various noise multi-

plication factors g and d.

Straightforward calculations on these noise multi-

plication factors reveal that, for every arbitrary

sinusoidal input signal and noise sources e2 and e3

being equal for all four integrators:

� for all transconductors, the output noise increases

with an increasing signal amplitude A. This

corresponds to the results obtained in [11,23±25];

� the hyperbolic-sine transconductor, the quadratic

transconductor and the linear transconductor can be

optimized by means of a proper reference current

Iref ,

� the exponential transconductor can be optimized by

means of a proper choice of a,

� an optimized hyperbolic-sine transconductor yields

a lower noise contribution than an optimized

exponential transconductor,

� an optimized linear transconductor yields a lower

noise contribution than an optimized quadratic

transconductor and

� an optimized linear transconductor yields a lower

noise contribution than an optimized hyperbolic

sine transconductor.

Taking into account that the noise powers of e2�t�
and e3�t� can be smaller when the circuit is operated in

class AB than when the circuit is operated in class A

and that for a given signal current the thermal noise

generated by a MOS transistor in strong inversion will

be smaller than the shot noise of a bipolar transistor or

weak-inversion MOS transistor, it becomes clear that

indeed the lowest noise contribution is achieved with

the four-transistor strong-inversion transconductor.

However, comparing the four integrators at the

upper side of the dynamic range, thus the transcon-

ductor's output capability:

� the output signal amplitude of the exponential

transconductor is limited to Iref ,

Table 1. Comparison of the various noise multiplication factors g and d.

Transconductor g d

F�v� � Iref exp�v=Vref� A2�2a2�1�
2

aÿ
��������
a2ÿ1
p��������
a2ÿ1
p

F�v� � 2Iref sinh�v=Vref� A2�8I2
ref

2

�������������
A2�4I2

ref

p
ÿ2Iref

2Iref

F�v� � Iref�1� v=Vref�2 4AaIref
A�aÿ

��������
a2ÿ1
p

�
4Iref

F�v� � 4Irefv=Vref 16I2
ref

A2

32I2
ref
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� the output signal amplitude of the hyperbolic-sine

transconductor is unlimited,

� the output signal amplitude of the quadratic

transconductor is limited to Iref and

� the output signal amplitude of the linear transcon-

ductor is limited by Vref and thus to 4Iref .

From the above observations two important

conclusions can be drawn:

� if, for a given range of input signals, the signal
voltage swing inside the integrator is not limited
by the circuit or its power supply, the strong-
inversion class-AB translinear integrator has the
largest dynamic range, and

� if, for a given range of input signals, the voltage
swing inside the integrator is limited by the
circuit and/or its power supply, the class-AB
hyperbolic-sine integrator has the largest
dynamic range.
Of course, in practice, the dynamic range of the

hyperbolic-sine integrator will be limited by various

transistor second-order effects, such as base currents,

series resistances, high-level injection and ®nite

transit frequencies. However, many of these effects

can be counteracted by careful circuit and layout

design.

From the above observations it also follows that

there are no reasons to choose for an exponential or

quadratic transconductor from a dynamic-range point

of view. Only in ultra-low-power applications, where

resistors would become too large for integration, and

all active devices behave exponentially, dynamic

translinear techniques may be the only way to

implement inherently linear continuous-time transfer

functions [13]. The quadratic transconductor, as found

in H -domain integrators may be interesting from an

academic point of view, but does not seem to have any

practical value.

4. Design Example

In the previous section, it was shown that the

hyperbolic-sine integrator is a promising circuit for

high-dynamic-range signal processing, even at low

supply voltages, and that its noise contribution can be

minimized by choosing a proper bias current Iref . For

this reason, a + 1.65-V bipolar class-AB translinear

integrator has been designed, using standard trans-

linear techniques. Its circuit diagram is depicted in

Fig. 4.

Both the sinh and cosh functions are implemented

by the translinear loop comprising transistors Q1

through Q4. The difference between the collector

currents of Q2 and Q3 equals the integrator output

signal Isinh � 2IZ sinh�v=VT� � F�v�, VT being

the thermal voltage kT=q. The sum of these

collector currents equals Icosh � 2IZ cosh�v=VT� �
VTdF�v�=dv. Note the difference in dimension

Fig. 4. Circuit diagram of the bipolar class-AB translinear integrator.
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between Icosh and dF�v�=dv in Fig. 1, which originates

from the term VT .

Current IZ can be used to optimize the dynamic

range of the complete integrator according to (27)

with the aid of a circuit simulator. Note that, apart

from G1�x; t� and G2�x; t�, also the noise power-

density spectra Se2
�t� and Se3�t� depend on the

momentary signal values, which, in turn, depend on

the integrator input signal and the implemented class-

AB behavior. For this reason, a mathematical

expression for the optimal value of IZ is not easily

found.

To increase the input impedance, which is directly

related to the integrator DC gain, two common-

emitter stages, Q5 and Q6, have been added.

The class-AB divider is implemented by two class-

A ``log-antilog'' multiplier/dividers [18] (Qd1 through

Qd4), each processing one half of the signal. IF is a

normalizing constant, for the output of the translinear

multiplier/divider is also a current. Since the

operation of a single multiplier/divider is limited to

one quadrant only and because IF and Icosh are already

unipolar, the integrator input signal is split into two

unipolar currents that can be processed separately.

This is done by the class-AB push-pull stage at left.

The output currents of this current splitter equal

+iin �
�����������������
i2
in � 4I2

X

p
2

:

Current source IX determines the class-AB behavior of

the splitter and thus of the complete integrator. To

make the ¯ow of output currents larger than bIX

possible (b being the (signal- and frequency-depen-

dent!) large-signal current gain factor of a transistor),

two additional (non-inverting) ampli®ers that supply

the base currents of these four transistors have been

added. After the multiplication/division, both signals

are added in capacitor C in order to restore the original

bipolarity.

The transfer function of this translinear integrator

equals: Isinh � IF

VTC

R
iindt. It can be seen that the

integrator time constant t �� VTC=IF� can easily be

controlled over a wide range by means of IF. Note

Fig. 5. Simulated small-signal frequency response of the bipolar class-AB translinear integrator for IX � IF � IZ � 10 nA and C� 100 pF.

Translinear Filters 231



that, if IF is made proportional to the absolute

temperature (PTAT), t becomes independent of the

temperature [5,6].

Experimental results. The circuit shown in Fig. 4

was simulated using SPICE and realistic (IC)

capacitor and (minimum-size) transistor models,

extracted from our in-house 2-mm, 7-GHz bipolar

IC process. Typical transistor parameters are:

hfe;NPN&100, fT;NPN&7 GHz, hfe;LPNP&80 and

fT;LPNP&40 MHz. The results indicate the correct

operation of the translinear integrator for various

temperatures and values of IF, IX, IZ and C.

Fig. 5 shows the simulated small-signal frequency

response for IX � IF � IZ � 10 nA and C� 100 pF at

273 K. The unity-gain frequency equals 610 Hz. It can

be seen that the integrator bandwidth, i.e. the

frequency range over which the integrator transfer

deviates less than 3 dB from the ideal transfer of 20 dB

per decade, is limited, at low frequencies by the ®nite

DC gain, which, in turn, results from the limited

current gain factor of the transistors in the rightmost

current mirrors and, at high frequencies, by the limited

transit frequency of the transistors resulting from the

low collector bias currents.

Fig. 6 depicts the simulated transient response for a

10 nA ( peak value), 1 kHz; input signal, for the same

control currents as above. Thus the peak value of the

input signal equals the quiescent current IX. The upper

curve shows the integrator output signal analyzed in

the frequency domain, while the lower curve shows

the same signal in the time domain. The total

harmonic distortion in this situation equals 0.12%.

Fig. 7 also depicts the integrator output signal, but

now for a 100 nA ( peak value) input signal, which

equals ten times the quiescent current IX. In this

situation, the total harmonic distortion equals 2.0%.

Fig. 8 again shows the integrator output signal, but

now for a 1 mA ( peak value) input signal, thus

hundred times IX. Clearly, the effects of the limited

transistor current gain factors are visible: both the

peaks and the zero-crossings become severely

distorted. These effects are known as soft clipping

and cross-over distortion. Due to these distortion

Fig. 6. Simulated transient response for a 10 nA ( peak value), 1 kHz; input signal, in the frequency domain (upper curve) and in the time

domain (lower curve). The total harmonic distortion equals 0.12%.
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mechanisms, the total harmonic distortion equals

10%.

Fig. 9 indicates the in¯uence of a stationary noise

source, located at the output of the multiplier/divider,

thus corresponding with e2 in the previous noise

analysis. The pseudo-random noise signal, shown in

the uppermost curve, comprises 12 sinusoidal signals

and is characterized by a noise bandwidth from

100 Hz to 10 kHz; and an average noise power of

14 aA2. This value is much larger than the noise of the

given circuit and its bias and signal currents, but

demonstrates exactly what happens for changes in the

noise-optimization current IZ. The lower three curves

show the integrator output current for IZ equal to

3.2 nA, 10 nA and 32 nA, respectively. It can be seen

that the resulting noise at the output becomes smaller

for smaller values of IZ, thus for smaller values of

Ex�G2
1�x; t��, in correspondence with (27). Also note

that the noise mainly affects the peaks of the sinusoid,

thus for large values of dF(v(t))/dv(t). This is in line

with (10) and (20).

The in¯uence of a stationary noise source e3 is

depicted in Fig. 10. The same pseudo-random noise

signal is used, but now inserted at the output of the

block dF�v�/dv. Now, the resulting noise at the output

becomes smaller for larger values of IZ, thus for

smaller values of Ex�G2
2�x; t��, in correspondence with

(27). Also note that the noise mainly affects the zero-

crossings of the sinusoid, thus for small values of

dF�v�t��/dv�t�. This is in line with (11) and (20). From

Figs. 9 and 10, it will be clear that, when e2 and e3 are

in the same order of magnitude, which is the case for

the underlying translinear integrator, an optimum IZ

can be found. In this situation, this optimum lies

around 12 nA.

To verify the circuit operation in practice, the

class-AB translinear integrator was implemented in a

bread-board realization, using transistor arrays,

fabricated in a standard 2.5 mm BiCMOS IC process.

Fig. 11 shows a photograph of the breadboard circuit.

For biasing purposes, the integrator was enclosed in a

unity-feedback con®guration, which results in a ®rst-

order low-pass ®lter with a cutoff frequency of
IF

2pVT C Hz.

Fig. 7. Simulated transient response for a 100 nA ( peak value), 1 kHz; input signal, in the frequency domain (upper curve) and in the time

domain (lower curve). The total harmonic distortion equals 2.0%.

Translinear Filters 233



Fig. 8. Simulated transient response for a 1 mA ( peak value), 1 kHz; input signal, in the frequency domain (upper curve) and in the time

domain (lower curve). The total harmonic distortion equals 10%.

Fig. 9. Simulated transient response of the integrator in unity-feedback con®guration for a 100 nA ( peak value), 1 kHz input signal and a

pseudo-random noise signal e2, characterized by a noise bandwidth from 100 Hz to 10 kHz; and an average noise power of 14 aA2, for three

different values of the noise-optimization current IZ . The uppermost curve shows the pseudo-random noise signal. The lower curves show

the output current for IZ equal to 3.2 nA, 10 nA and 32 nA, respectively.
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Fig. 10. Simulated transient response of the integrator in unity-feedback con®guration for a 100 nA ( peak value), 1 kHz input signal and a

pseudo-random noise signal e3, characterized by a noise bandwidth from 100 Hz to 10 kHz; and an average noise power of 14 aA2, for three

different values of the noise-optimization current IZ . The uppermost curve shows the pseudo-random noise signal. The lower curves show

the output current for IZ equal to 3.2 nA, 10 nA and 32 nA, respectively.

Fig. 11. Bread-board realization of the class-AB translinear integrator.
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Subsequently, the circuit was optimized for audio

signals in a frequency range from 100 Hz to 10 kHz;

and a cutoff frequency of 1.6 kHz;. For C� 100 pF

and T� 293 K (room temperature), IF must equal

26 nA. Current IX sets the high-frequency behavior of

the ®lter and was chosen to be equal to 10 nA in order

to cope with the large parasitic capacitances of the

bread-board realization. The measured frequency

response hardly depended on IZ, as expected. Fig.

12 shows the measured frequency response (both

magnitude and phase) of the integrator in unity-

feedback con®guration for a 100 nA (RMS) input

signal. The effect of the low transistor transit

frequencies, resulting from the relatively small value

of IX is clearly visible.

The actual choice of IZ was based on similar

simulations as described above. 13 nA turned out to be

a convenient value for a 100 nA (RMS), 1-kHz

sinusoid input signal. Fig. 13 shows the measured

transient response of the integrator in unity-feedback

con®guration for three different magnitudes of the

input signal, being zero, 100 nA (RMS) and 400 nA

(RMS), respectively. In the latter situation, the total

harmonic distortion equals 2%. Together with the

measured noise of 280 pA (RMS), this yields a

dynamic range, i.e. a maximal signal-to-noise ratio,

of 63 dB. Also the in¯uence of the signal magnitude

on the total output noise, i.e. the signal6 noise

intermodulation, is clearly visible: for larger input

currents the output noise also becomes larger, which

is in correspondence with equation (35). The virtual

dynamic range, thus the ratio of the maximal signal

the integrator can handle and the noise that is

produced when there is no signal applied, equals

76 dB. The supply voltage and the quiescent current

equal 3.3 V (+ 1.65 V) and 310 nA, respectively.

5. Conclusions

In this paper we derived several design principles to

achieve an optimal dynamic range in translinear

Fig. 12. Measured frequency response of the integrator in unity-feedback con®guration for a 100 nA (peak value) input signal.
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integrators. It turned out that, for four representative

integrator structures,
* if, for a given range of input signals, the signal

voltage swing inside the integrator is not limited by

the circuit or its power supply, the class-AB

translinear integrator, employing MOS transistors

operating in their strong-inversion region, has the

largest dynamic range, and
* if, for a given range of input signals, the voltage

swing inside the integrator is limited by the circuit

and/or its power supply, the class-AB translinear

integrator, employing bipolar transistors or MOS

transistors operating in their weak-inversion

region, has the largest dynamic range.

As an example, a + 1.65 V translinear integrator

was presented that makes dynamic-range optimiza-

tion possible by adjusting just one bias current. Its

application in an audio ®lter yields a 63-dB dynamic

range and a virtual dynamic range of 76 dB, while the

current consumption can be as low as 310 nA.
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