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Abstract. In this paper, the strong inversion MOS analog of the recently proposed class of log-domain ®lters, or

translinear ®lters, is proposed.The dynamic
p

-domain principle, or dynamic voltage-translinear principle,

exploits the quadratic law, describing the MOS transistor in the strong inversion region, both to perform an

expanding V-I conversion of the capacitor voltages and to implement multiplications and square roots of currents

based on the voltage-translinear principle.The presented theory is applied to the design of a current-controlled two-

integrator oscillator. Experiment results of a pure CMOS test IC show the feasibility of the
p

-domain principle.

The realized oscillator has a THD of ÿ 42 dB and is linearly frequency tunable across 1.3 decades.
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1. Introduction

Filters employing instantaneous or syllabic com-

panding are receiving increasing interest due to the

trend to lower supply voltages [1±7]. In conventional

®lter realizations, e.g. gm-C ®lters, the signal voltage

swings are limited by the available supply voltage.

Since these ®lters are based on linear elements, the

signal current swings are also limited directly by the

supply voltage. A possible solution to overcome the

limited signal current swings is to employ com-

panding. By exploiting the nonlinear concave voltage-

to-current characteristic of the bipolar transistor or the

MOS transistor, the voltage swings in a companding

®lter are much smaller than the current swings.

Thus, larger signal swings are possible in a

companding ®lter relative to ®lters based on linear

elements, which is bene®cial with respect to the

dynamic range.

Despite the local nonlinearities, companding ®lters

can have an overall linear transfer function [2±7].

An interesting example of companding ®lters are

the translinear, or log-domain, ®lters, which are

inherently instantaneously companding [2,8,9].

Translinear ®lters exploit the exponential law

describing the bipolar transistor, or the MOS

transistor in weak inversion, to compress the input

current of the ®lter and also to implement multi-

plications of currents according to the translinear

principle [10].

In MOS IC processes, translinear ®lters can be

realized by operating the MOSTs in the subthreshold

region [11]. However, subthreshold operation is

limited to low frequencies. Fortunately, the com-

panding principle on which translinear ®lters are

based can be generalized to MOSTs operating in

strong inversion [6]. A current-mode approach has to

be used. A voltage-mode approach results in ®lters

which are not companding [12].

In this paper, the design of a compandingp
-domain current-controlled oscillator is described.

In Section 2, the design principles of
p

-domain

operation are treated. These principles were used to

design an integrator, described in Section 3. Based on

the integrator, a current-controlled harmonic oscil-

lator was designed, described in Section 4. An

experimental prototype of the oscillator was realized.

The measurement results are presented in Section 5.

2. Design Principles

Dynamic
p

-Domain Principle

The
p

-domain principle, the strong inversion MOS

analog of the log-domain principle, will be explained



with the help of the generic subcircuit shown in Fig. 1.

Using the simple quadratic law to describe the large

signal behavior of the MOS transistor, the drain

current Iout can be expressed as:

Iout �
b
2
�VGS ÿ Vth�2 �1�

where b, VGS and Vth are the transconductance factor,

the gate-source voltage and the threshold voltage,

respectively.

Due to the nonlinear large signal behavior of the

MOST, the swing of the capacitance voltage Vcap,

which equals VGS, is smaller than the MOST's drain

current swing. This is illustrated in Fig. 2, which is

based on the ideal mathematical relations. In this

®gure, the drain current consists of the superposition

of a DC current of 5 mA and a sine wave with an

amplitude of 4.75 mA and a frequency of 100 kHz.

The MOST's threshold voltage and the transconduc-

tance factor are 0.75 V and 40 mA=V2, respectively.

The capacitance is 20 pF. Of course, the instantaneous

compression of the capacitance voltages in ap
-domain ®lter will be less than in a log-domain

®lter, since the exponential function is far steeper than

the quadratic law.

The capacitance voltage swing is only of interest

with respect to the available supply voltage. The

capacitance current Icap is actually much more

interesting, since we are pursuing a current-mode

approach. Due to the square law, Icap is nonlinearly

related to Iout. In contrast with Vcap, the shape of Icap is

also dependent on the frequency of the AC component

in Iout. In the situation depicted in Fig. 2, the current

swings of Icap and Iout are in the same order of

magnitude. Consequently, at current level there is no

companding.

An expression for Icap can be found from the

constitutive law. To this end, we need to know the

derivative with respect to time of VGS � Vcap, which

can be found from eqn (1). This yields:

Icap �
C������������

2bIout

p _Iout �2�

where the dot represents differentiation with respect

to time.

A better insight into the dynamic
p

-domain

principle is obtained by slightly rewriting this

equation:

Fig. 1. The dynamic
p

-domain principle.

Fig. 2. Drain current (r) and capacitance current (j) and voltage (m) in the companding subcircuit shown in Fig. 1.
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Cout�������
2bi

q � �������
Iout

p
Icap �3�

The dynamic
p

-domain principle thus reads: A
derivative of a current can be replaced by the product
of the square root of that current and a capacitance
current. This implies that instead of realizing the

derivative on the left-hand side of equation (3), we can

implement the current-mode algebraic equation on the

right-hand side of (3). As the right-hand side is part of

the implementation, the left-hand side is part of the

differential equation realized. Consequently, this

differential equation will be process and temperature

dependent through b.

Voltage-Translinear Principle

In strong inversion, products and square roots of

currents can be realized by means of the voltage-

translinear principle [13±15] (a term coined by Gilbert

[16]). Voltage-translinear circuits are based on the

linear (af®ne, to be exact) relation between the

transconductance gm and the gate-source voltage of

an MOST operating in strong inversion, which

follows from equation (1).

A four-transistor voltage-translinear loop, in up-

down topology, is shown in Fig. 3, comprising two

MOSTs connected clockwise and two connected

counterclockwise. According to Kirchhoff's voltage

law, the gate-source voltages add up to zero.

Assuming the threshold voltages and the transcon-

ductance factors are equal, a current-mode expression

describing the voltage-translinear loop can be found

[14,15]: ����
I1

p � ����
I3

p � ����
I2

p � ����
I4

p �1�
This equation, and generalized forms, can be used to

realize current-mode algebraic operations like multi-

plication and the square root, which is exactly what

is needed to implement the dynamic
p

-domain

principle.

Square Law Conformity

Both the dynamic
p

-domain principle and the

voltage-translinear principle rely on the quadratic

behavior of the MOST operating in strong inversion.

However, the square law is quite a coarse simpli®ca-

tion of the MOST's behavior [17]. The square law

model is only valid across approximately 1.5 decades

of current [15]. At the low end, the square law is

limited by the moderate inversion region. At the high

end, it is limited by carrier mobility reduction. The

square law is far less exact than the exponential law,

describing the bipolar transistor, on which the

translinear principle is based. Therefore, it is

advisable to check the range of validity of the

square law model.

Some measurements were performed on a 1.6 mm,

n-well CMOS process, which was used to implement

the
p

-domain oscillator described in Section 4. In

Fig. 4, a measurement is shown of a MOST having

dimensions W � L � 20 mm. The drain current was

measured for gate voltages from 0.7 V to 3 V; higher

gate voltages are not very interesting for low-voltage

operation. The measured drain current was ®tted on

the ideal square law (1). To emphasize the difference

between the measured and the ®tted curve in the

moderate inversion region, the drain current is plotted

on a logarithmic scale. The ®tted parameters are

Vth � 0:815 V and b � 56:8 mA=V2. The plotted error

curve shows that the ®t is accurate to within 1% for

drain currents ranging from 5.6 mA to more than

135 mA, which corresponds to more than 1.4 decades

of drain current. Although this range is much smaller

than the validity of the exponential law for the bipolar

transistor, which is valid across approximately eight

decades, it is suf®cient to justify the application of the

simple square law model.

3. Voltage-Translinear Integrator

Any integrator can be described by the dimensionless

differential equation:

_z � x �5�
where the dot represent differentiation with respect toFig. 3. Voltage-translinear loop.
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the dimensionless time t and x and z represent the

input and output signal, respectively.

In order to implement an integrator using the

design principles discussed in the previous section,

equation (5) has to be transformed into a differential

equation with the proper dimensions. As both thep
-domain principle and the voltage-translinear prin-

ciple are basically current-mode, it is obvious that x
and z have to be transformed into currents. This is

accomplished by de®ning the equivalence relations:

x � Iin

Io

z � Iout

Io

�6�

where Iin and Iout are the input and output current of

the integrator, respectively, and Io is an arbitrary DC

current.

The dimensionless time t implicitly presented in

equation (5) has to be transformed into the usual time t
with dimension �s�. This can be done by applying the

transformation:

q
qt
� C

������
Io1

p������
2b
p

Io2

q
qt

�7�

where Io1 and Io2 are DC bias currents. From this

equation, it follows directly that frequency, the

inverse of time t, is linearly controllable through Io2.

Applying the above transformations, a differential

equation is obtained having the proper dimensions for

a
p

-domain implementation to be possible:

C
������
Io1

p������
2b
p _Iout � Io2Iin �8�

The derivative _Iout in equation (8) can be

eliminated if we introduce a capacitance current Icap

according to equation (2) corresponding to Fig. 1.

Using equation (2) to eliminate the derivative _Iout

from (5) an algebraic equation is obtained:������������
IoutIo1

p
Icap � Io2Iin �9�

If we are able to implement this equation, we have

actually implemented the integrator described by

equation (8).

To implement equation (9), the voltage-translinear

principle can be used. Equation (9) has to be mapped

onto one or more voltage-translinear loop equations

(4). Unfortunately, no analytical synthesis method for

mapping algebraic equations on voltage-translinear

loop equations exists [15]. The numerical method

described in [15] cannot be used either, since it is

limited to single-loop four-transistor circuits, having

one input, one output and one bias current. In equation

(9), an input current, and output current, two bias

currents Io1 and Io2, and a capacitance current are

present.

The only alternative is to split equation (9) into

several simpler parts, which can be realized by

existing voltage-translinear circuits. The term������������
IoutIo1

p
can be realized by a square root circuit

[14]. Next, a multiplier/divider can be used to realize

the product Io2Iin and divide it by the output of the

Fig. 4. Measured e and ®tted & drain current and the error between measurement and square law.
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square root circuit [15,18]. Then, the output of the

multiplier is the capacitance current Icap. The

subcircuit shown in Fig. 1 de®nes the relation between

Icap and Iout. A block schematic of the solution thus

obtained is shown in Fig. 5.

Square Root Circuit

A voltage-translinear square root circuit was pub-

lished in [14,15]. The circuit is depicted in Fig. 6.

Its loop equation is given by:�����
Ix1

q
�

�����
Ix2

q
� 2

�������������������������
Ix1
� Ix2

4
� Iz

r
�10�

where Ix1
and Ix2

are two input currents and

Iz � 1
2

����������
Ix1

Ix2

p
is the output current of the square root

circuit. The relation between these currents and Fig. 5

is given by: Ix1
� Iout, Ix2

� Io1 and Iz � 1
2

������������
Io1Iout

p
.

A disadvantage of the circuit shown in Fig. 6 is that

it is based on a stacked translinear loop, which is

sensitive to body effect [15]. Due to the body effect,

the threshold voltages of the MOSTs in a stacked loop

differ, and as a consequence, errors are introduced in

the general equation (4) unless all MOSTs have

individual wells connected to their sources, which is

disadvantageous with respect to bandwidth.

In up-down topologies, the in¯uence of the body-

effect is much smaller. Therefore, a new square root

circuit is designed by mapping equation (10) onto a

voltage-translinear loop in up-down topology, shown

in Fig. 3. The resulting circuit is shown in Fig. 7.

Transistors M1 ÿM4 make up the translinear core.

The dimensions chosen for M1 ÿM4 are W � 10 mm

and L � 12 mm. The current-mirror M5 ÿM6 is used

to supply both M2 and M3 with the output current Iz

Fig. 5. Block schematic of a voltage-translinear integrator.

Fig. 6. Square root circuit, stacked topology. Fig. 7. Square root circuit, up-down topology.
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according to equation (10) [15]. The aspect ratio of the

current mirror transistors is chosen to be quite large, to

gain some voltage room for the transistors of the

translinear core at low supply voltages. The dimen-

sions of M5 and M6 are W � 200 mm and L � 8 mm.

Multiplier

Multiplier circuits are often based on the well-known

quarter-square principle: �a� b�2 ÿ �aÿ b�2 � 4ab.

Using this expression, a multiplier can be constructed

from two square circuits. In [15,18], four-quadrant

voltage-translinear multipliers are presented, which

are based on the quarter-square principle.The

resulting circuits have a kind of differential difference

input structure.

The multiplier described in [15] is based on

translinear loops in up-down topology, which are

insensitive to the body effect. This circuit is shown in

Fig. 8. The voltage-translinear cores of the two square

circuits is formed by M1 ÿM4 and M11 ÿM14,

respectively. The output currents of the square circuits

are subtracted by means of a PMOS current mirror,

yielding the output current Iz of the four-quadrant

multiplier, which is given by Iz � Ix1
Ix2
=�2Ix3

�. This

current is supplied to the capacitance shown in Fig. 5.

The relations between the input currents Ix1
, Ix2

and Ix3

and the output current Iz of the multiplier shown

in Fig. 8, and the currents in the block schematic

shown in Fig. 5 are given by: Ix1
� Iin, Ix2

� Io2,

Ix3
� 1

2

������������
Io1Iout

p
and Iz � Icap.

For reasons of voltage compatibility between the

PMOS current mirror load of the multiplier and the

integrator output transistor, a PMOS output transistor

is used for the integrator. By choosing equal

dimensions for the output PMOST as for the

PMOSTs comprising the current mirror, the two

output voltages of the square circuits, comprising the

multiplier, are identical, thus reducing the even-order

distortion of the multiplier.

Complete Voltage-Translinear Integrator

Employing the square-root circuit, shown in Fig. 7,

and the multiplier, shown in Fig. 8, in the block

schematic, shown in Fig. 5, the complete voltage-

translinear integrator thus obtained is depicted in Fig.

9. Note that the output structure, shown in Fig. 1, of

the integrator is not part of any translinear loop. In

most published log-domain ®lters/integrators, this

output structure is part of the translinear loop.

However, this is not a necessary condition, which is

illustrated by the log-domain integrator described in

[19].

The output of the integrator has to be class A

biased. Therefore, a DC bias current source is

connected from the drain of the output transistor of

the integrator to ground.

Fig. 8. Four-quadrant multiplier/divider.
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4. CCO Design

The integrator described in the previous section was

used to design a current-controlled harmonic oscil-

lator. By applying negative feedback to a cascade of

two integrators, a two-integrator oscillator is obtained.

The block schematic of the realized two-integrator

oscillator is shown in Fig. 10. The oscillation

frequency of the loop equals the unity-gain frequency

of the integrators, which is given by:

oc �
������
2b
p

Io2

C
������
Io1

p �11�

The oscillation frequency can be tuned linearly by

means of Io2.

A loop of two integrators and an inverter is

described by a linear differential equation, which

cannot posses a unique limit cycle. In other words, an

amplitude control circuit is required, which is also

depicted in Fig. 10. A ®xed amplitude is maintained

by controlling the amount of local feedback of the

integrators. Negative feedback causes a decrease of

the oscillation amplitude, and positive feedback

causes an increase. To be able to apply both positive

and negative feedback to the integrators, a four-

quadrant multiplier is required in the local feedback

paths. The voltage-translinear multiplier shown in

Fig. 8 is used to this end.

The integrator, shown in Fig. 9, has a differential

input structure. Therefore, it is not necessary to

convert the output of the multiplier to a single output

current by means of the PMOS current mirror shown

in Fig. 8. Since the output voltage levels of M4 and

M14, shown in Fig. 8, are not compatible with the

input voltage levels of the integrator, it is necessary to

load the two square circuits, comprising the multi-

plier, with two PMOS current mirrors. The differential

output current of these two current mirrors is supplied

to the differential input of the integrator.

The amplitude is measured by adding the squares

of the two quadrature outputs of the oscillator,

yielding the square of the amplitude [20]. Two

voltage-translinear square circuits, which were also

Fig. 10. Two-integrator oscillator.

Fig. 9.
p

-domain integrator.
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employed in the multiplier shown in Fig. 8, can be

used to this end. The output currents of the square

circuits are added by connecting the output terminals.

The square of the oscillation amplitude, thus obtained,

is compared with a reference current. The difference

is applied to the second input of the feedback

multipliers, thus controlling the local feedback of

the integrators.

In the set-up shown in Fig. 10, the amplitude and

the frequency can be tuned independently [20], by

means of Io2 and Aref , respectively.

5. Measurement Results

To verify the dynamic
p

-domain principle, the

Fig. 11. Photograph of the oscillator.

Fig. 12. Output currents of the oscillator.
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current-controlled
p

-domain oscillator was realized

in a 1.6 mm n-well CMOS process. Fig. 11 shows a

chip photograph of the prototype oscillator. The two

capacitors of the oscillator are external. Also, all DC

bias and control currents are supplied externally.

The oscillator occupies a chip area of 0.65 mm2.

Most area is consumed by the current mirrors, which

are operated in the moderate inversion region to gain

some voltage room. The oscillator is designed for a

supply voltage of 3.3 V. An interesting alternative

with respect to both low-voltage operation and

required chip area is the operation of MOSTs in the

triode region [21±24]. The possibilities offered by

voltage-translinear loops comprising MOSTs oper-

ating in the triode region will be the aim of future

research.

Fig. 12 shows the quadrature output currents of the

oscillator. The output currents of the two integrators

Fig. 13. Frequency spectrum of the oscillator.

Fig. 14. Frequency control of the oscillator.

p
-Domain Oscillator 25



are measured across two resistors of 100 kO. The DC

current used to bias the integrators in class A is 5 mA.

The oscillation amplitude is 3.6 mA, which is 72% of

the class A bias current.

The capacitors have a value of 82 pF. The control

currents Io1 and Io2 are 5 mA and 3.1 mA, respectively.

With equation (11), this amounts to an oscillation

frequency of 28 kHz. The measured oscillation

frequency is 22 kHz.

Fig. 13 shows the measured output spectrum of the

oscillator. To prevent distortion caused by the output

voltage swing across the load resistor in relation to the

output conductance of the output MOST, an external

CB stage is used to buffer the output current. The

harmonic distortion is mainly caused by the second

and third harmonic at ÿ 46 dB and ÿ 45 dB,

respectively.

The frequency tunability as a function of Io2 was

measured for the same values of the capacitors and the

bias currents.The results are shown in Fig. 14. The

®gure shows that the oscillator is linearly tunable from

about 2.6 kHz to 53 kHz. For large values of the

control current Io2, correct operation of the voltage-

translinear integrator is prohibited by the limited

supply voltage.

6. Conclusions

In this paper, the strong inversion MOS analog of the

recently proposed log-domain principle, also called

the dynamic translinear principle, has been derived.

The
p

-domain principle, or dynamic voltage-

translinear principle, is based on the quadratic law

describing the MOST in the strong inversion region.

Measurements showed an accurate quadratic behavior

across at least 1.5 decades of drain current. Thep
-domain principle can be used to substitute

algebraic equations for the derivatives in a differential

equation. These algebraic equations can be imple-

mented by means of the voltage-translinear principle.

The
p

-domain principle has been illustrated by the

design of a current-controlled two-integrator oscil-

lator. The oscillator has been implemented in a 1.6 mm

n-well CMOS process. The measured oscillator has a

THD of ÿ 42 dB and is linearly frequency tunable

from 2.6 to 53 kHz.

Future research aims at the application of MOSTs

operating in the triode region, which might be

advantageous with respect to required chip area and

supply voltage.
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