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Abstract

Dynamic translinear circuits and log-domain filters form a promising
and challenging approach to meet the dynamic range limitations that
conventional analogue implementation techniques are facing due to ever
lower supply voltages, low power consumption and high-frequency de-
mands. This paper aims to give an overview of this young, yet rapidly
developing, circuit paradigm. Emphasis is placed on methods for analysis
and synthesis and on state-of-the-art results obtained for both linear and
non-linear applications.

1 Introduction

Due to the ongoing trends to lower supply voltages and low power operation, the
area of analogue integrated filters is facing serious challenges [?,?]. The maximal
dynamic range achievable using conventional filter implementation techniques,
such as opamp-MOSFET-C, transconductance-C' and switched-capacitor, be-
comes severely restricted by the supply voltage. In ultra-low-power environ-
ments, linear resistors become too large for on-chip integration. Finally, the
situation is complicated by high-frequency demands and the fact that the filter
transfer function has to be tuneable to compensate for process tolerances.

In the area of continuous-time filters, a promising approach to meet these
challenges is provided by the class of ‘Translinear Filters’. Due to the encourag-
ing expectations, research efforts have increased rapidly and TransLinear (TL)
filter design has become a trend. This is illustrated in Fig. 1. In a general
context, translinear filters form a sub-class of an encompassing class of com-
panding networks that exhibit a theoretically linear frequency-dependent trans-
fer function externally even though the internal signal path contains non-linear
elements. An excellent general overview of companding filters can be found
in [?].

Translinear filters were originally introduced by Adams in 1979 [?]. Since
Adams at the time did not recognise the TL nature of these circuits, he coined

0The authors are with the Electronics Research Laboratory, Department of Electrical En-
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Figure 1: Publications on dynamic translinear circuits.

the term ‘log-Domain Filters’, based on the logarithmic relation between the
voltages and currents. For many years, the idea of log-domain filtering was to
gather dust. In 1990, Seevinck independently reinvented the TL filter concept,
which he denoted by the term ‘Current-mode Companding’ [?]. The filters
presented by both Adams and Seevinck were first-order. The expansive interest
in TL filters really took off in 1993, when Frey published a synthesis method
enabling the design of higher-order log-domain filters [?]. In addition, Frey
proposed a more general class of TL filters, which he termed ‘Exponential State-
Space Filters’ [?].

From that time, many other researchers began to investigate these filters.
Toumazou et al. published an implementation in weak inversion MOS, showing
the potential for low-power operation [?]. The first experimental results were
published by Perry and Roberts [?]. In addition, they proposed an alternative
synthesis method based on the simulation of LC ladder filters. The first ex-
perimental results in subthreshold MOS were presented by Ngarmnil et al. [?].
Punzenberger et al. demonstrated the suitability for low-voltage applications [?]
and the favourable dynamic range specification resulting from class AB oper-
ation: 65 dB at 1.2 V supply voltage [?]. Different synthesis methods were
proposed by various researchers [?,7,7, 7,7, ?]. A general analysis method was
published by Mulder et al. [?], who also coined the term ‘Translinear Filter’.
Alternative analysis methods were described in [?,?]. Application of the under-
lying design principle to non-linear dynamic functions was proposed by various
researchers. These applications include oscillators [?,?,?], RMS-DC convert-
ers [?,?], mixer-filter combinations [?,?] and phase-locked loops [?,?,?]. A
generalisation to strong inversion MOS was proposed independently by Mulder
et al. [?] and Payne et al. [?]. At present, many research efforts are developed
in the area of noise analysis [?,?,7,7,?,7 ?], and other second-order effects [?].

This paper aims to give an overview of the complete field of dynamic translin-
ear circuits. The emphasis is on structured design methods and principles,



rather than on specific circuit implementations. The static and dynamic TL
principles are reviewed in Section 2. Section 3 gives an overview of analysis
methods. The general class of TL filters contains several different types. In Sec-
tion 4, the correspondences and differences between log-domain, tanh, and sinh
filters are treated. The theoretical relevance, or better, irrelevance, of a gener-
alisation of the DTL principle to strong inversion MOS is discussed in Section
5. Section 6 presents an overview on synthesis methods. Finally, an overview
of state-of-the-art results is presented in Section 7.

2 Translinear principles

Translinear circuits can be divided into two major groups: static translinear
(STL) and dynamic translinear (DTL) circuits. Static TL circuits realise static
transfer functions, both linear and non-linear; DTL circuits realise frequency-
dependent (transfer) functions, i.e., differential equations (DEs). The underly-
ing principles of STL and DTL circuits are reviewed in this section.

2.1 Static translinear principle

Translinear circuits are based on the exponential relation between voltage and
current, characteristic for the bipolar transistor and the MOS transistor in the
weak inversion region . The collector current I of a bipolar transistor in the
active region is given by:

Ic = I,eVe/Ur (1)

where all symbols have their usual meaning.

The TL principle applies to loops of semiconductor junctions. A TL loop
is characterised by an even number of junctions [?,?]. The number of devices
with a clockwise orientation equals the number of counter-clockwise oriented
devices. An example of a four-transistor TL loop is shown in Fig. 2. It is
assumed that the transistors are somehow biased at the collector currents I
through I;. When all devices operate at the same temperature, this yields the
familiar representation of TL loops in terms of products of currents:

Lz = L. (2)

This generic TL loop equation is the basis for a wide variety of static electronic
functions, which are theoretically temperature- and process-independent.

2.2 Dynamic translinear principle

The introduction of the capacitance as a basic element of TL networks sig-
nificantly extends the applicability of these circuits. As a result, DEs can be
realised; both linear DEs, describing linear filters, and non-linear DEs, e.g.,
oscillators and PLLs. The term ‘Dynamic Translinear’ was coined in [?] to de-
scribe this class of circuits. This expression emphasises the TL nature of these



Figure 2: A four-transistor translinear loop.

circuits, which has proven to be a distinct advantage with respect to structured
analysis and synthesis.

The DTL principle can be explained with reference to the sub-circuit shown
in Fig. 3. Using the current-mode approach, this circuit is described in terms of
the collector current I and the capacitance I, flowing through the capacitance
C. Note that the dc voltage source Von,: does not affect I.,,. An expression
for I.qp can be derived from the time derivative of eqn (1) [?,7]:

Luy = CURIE, (3)
Ic

where the dot represents differentiation with respect to time.
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Figure 3: Principle of dynamic translinear circuits.

Equation (3) shows that I.., is a non-linear function of I¢ and its time

derivative I¢. A better understanding of eqn (3) is obtained by slightly rewriting
it:

CUrlc = Laylc. (4)

Equation (4) directly states the DTL principle: A time derivative of a current
can be mapped onto a product of currents. At this point, the conventional
(static) TL principle comes into play, for, the product of currents on the right-
hand side (RHS) of eqn (4) can be realised very elegantly by means of the STL



principle. Thus, the implementation of (part of) a DE becomes equivalent to
the implementation of a product of currents.

3 Analysis

In almost all publications on DTL circuits, the emphasis has been on synthesis.
Both structured design methods and new circuit realisations have been pre-
sented. Nonetheless, although synthesis is more powerful than analysis, it must
go together with a generally applicable analysis method in the same domain.
Only when this condition is met, the full potentials of a synthesis method can
be exploited.

In this section, an overview is given of the analysis methods proposed in
literature. The methods are treated in the chronological order in which they
have appeared in literature.

3.1 Voltage-mode analysis

In [?], Adams not only presented a synthesis method, but also proposed an
analysis method. The first step of the analysis procedure is to write down the
node equations from the large-signal ac model of the filter. Next, the equations
containing the derivative of a capacitance voltage are multiplied by an expo-
nential term. Using the chain rule, the isolated derivatives can be eliminated,
as follows:

Veap d Veap

. Vea )
Veap — multiply by eTr — Veape T2 = Ur e Ur (5)

The intermediate voltages have to be eliminated, such that a single equation
results, expressing the relation between the compressed input and output volt-
age. Unfortunately, Adams does not give a systematic method to accomplish
this [?].

Finally, application of a logarithmic transformation yields the DE describing
the circuit in question. Adams proposed his analysis procedure in the context
of log-domain filters. However, in principle, the voltage-mode analysis method
can be applied to the analysis of tanh and sinh filters, as well. In that case, the
required transformations are the inverse hyperbolic tangent and sine function,
respectively.

Implicitly, Adams’ method has been applied in numerous publications to
verify parts of transistor level implementations. In [?], an example can be found
of the voltage-mode analysis of a complete second-order TL filter. Note that
in most papers, the analysis process is simplified by direct substitution of the
overall V-I transfer function of prevalent building blocks, such as the Et, E—,
T, S and S2 blocks introduced in [?]. This reduces the number of intermediate
voltages and node equations.



3.2 Small-signal analysis

A very simple way to calculate the transfer function of a complete filter is to
analyse the small-signal equivalent circuit, see, e.g., [?]. Since, by definition, a
small-signal analysis results in a linear transfer function, this method yields the
correct DE only when the DTL circuit under consideration is externally linear
and properly designed. The large-signal linearity cannot be proven and has to
be verified in another way. Numerical simulations can provide some insight.
Obviously, small-signal analysis cannot be applied to non-linear DTL circuits.

3.3 Global translinear analysis

A large-signal analysis method was presented by the authors in [?]. This current-
mode method is based on a TL approach and is believed to be completely
general. It has been tested with success on all published log-domain, tanh and
sinh filters. Basically, the only difference between STL and DTL circuits is the
presence of capacitances. The capacitance currents form the key to the analysis
of DTL circuits.

Static TL circuits can be analysed through the method described in [?]. The
first step is to express all collector currents in terms of the current sources, which
are connected to the nodes of the TL core. The collector currents are linear
combinations of the input, dc bias and output currents, and of some intermediate
currents in case of multiple-loop circuits. Once the collector currents are found,
the TL loop equations are derived. These are given by equations like (2). The
last analysis step is to solve the system of TL loop equations for the output
current(s) by eliminating the intermediate currents.

In DTL circuits, some capacitors are connected to the nodes of the TL core.
Consequently, the node currents are determined as well by the currents flowing
through these capacitors. Hence, the capacitance currents appear in the TL
loop equations. From this point of view, the capacitors can be regarded as
being a special kind of current source.

To solve the system of loop equations, the capacitance currents have to be
eliminated. To this end, expressions for the capacitance currents have to be
found. Fortunately, this is simple. A capacitance connected to a node of the TL
core will always form a loop with one or more base-emitter junction in series.
This is illustrated in Fig. 4. The capacitance voltage V.4, can be expressed in
terms of the base-emitter voltages, which in turn are expressed in terms of the
collector currents flowing through these transistors. The capacitance current
I.qp can now be calculated from the constitutive law by taking the derivative
of Viqp with respect to time. Thus, a very simple current-mode equation is
obtained:

Ic,
Ly =CUr Y i% (6)

The =+ sign of each term depends on the orientation of the corresponding tran-
sistor. To analyse a DTL circuit, eqn (6) has to be applied to each capacitance



in the circuit to find an expression for the current flowing through it. Finally,
elimination of the intermediate currents yields the DE describing the output
current.

Figure 4: A capacitance in (a part of) a translinear loop.

An example of the application of the global translinear analysis method can
be found in [?], where a second-order TL low-pass filter, designed by Frey [?], is
analysed.

3.4 Analysis based on Bernoulli’s DE

An alternative current-mode analysis method has been proposed by Drakakis et
al. in [?]. This method can be used to analyse log-domain filters based on the
generic structure shown in Fig. 5. The currents I, , where k € [1,...,n],and n
denotes the order of the filter, determine the transfer function of the filter. The
currents I, are dc bias currents.

Figure 5: Generic structure that can be analysed with the analysis method
based on Bernoulli’s differential equation.

The analysis procedure is based on the ‘Bernoulli cell’, shown in Fig. 6,
which is the basic element of the generic structure shown in Fig. 5. In general,
the Bernoulli cells are described by a first-order DE:

d 1
S mep LTy .. . Tp + L, = —,
CrUr gz mer 1 E+ L, T (7)



where I, is the input current, ¢; is a constant with dimension [Ak_l], Cy is
a capacitance and 1/T} a collector current, as shown in Fig. 6. Definition of a
current I,, = ¢ Li;T1 ... Ty, where ¢}, is a constant with dimension [A*], and
substitution in eqn (7) yields:

. cl
CwUr Ly, + LI, = 21T, _,. (8)
k-1

By definition, I,,, equals I;y,.
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Figure 6: Bernoulli cell.

To analyse a log-domain filter, first, the currents I,,, have to be determined
using STL analysis techniques. Next, application of eqn (8) to all Bernoulli cells
yields a set of n first-order DEs; a state-space description of the DTL circuit in
question.

3.5 State-space translinear analysis

State-space descriptions can be used to break down a high-order DE into a
system of first-order DEs. In TL filters, the state-space approach can be applied
beneficially for analysis purposes. Using the state-space translinear analysis
method described in this section [?], linear equations are obtained at an earlier
stage of the analysis. This limits the significant intermediate expression swell,
which is an inherent characteristic of the global translinear analysis method.

In general, it is necessary to choose state variables in order to find a state-
space description. For TL filters, the capacitance voltages are inconvenient state
variables. Since TL filters are current-mode circuits, a better choice is to use
the currents obtained from an expomnential V-I expansion of the capacitance
voltages, applying the exponential law describing the bipolar transistor.

As an example, consider the second-order filter shown in Fig. 7. In this filter,
expansion of the voltage V¢, across capacitance C1 is already implemented by
means of the output transistor (g. Therefore, the collector current I,,; of Qg
is chosen as the first state variable. Note that @5 merely acts as a dc voltage
source.

The voltage V¢, across the second capacitance C3 is not expanded within
the filter, but this can be accomplished by adding a fictitious sensing transistor



Figure 7: Sensing the states of a translinear filter.

@11, as shown in Fig. 7. The collector current I1; of this transistor is the second
state variable to be used.

The actual filter shown in Fig. 7 consists of two disjunct TL loops: ¢
through Qg and @7 through @i19. By adding @11, the first loop, @1-Qs, is
broken into two coupled second-order loops, i.e., @1-Q2-Q3-Q11 and (11-Q4-
Q5-Qs. Hence, the filter can be described by a set of three loop equations and
two expressions for the capacitance currents I, and I¢,, given by:

LinI, = (I7 + I¢,) I1, (9)
IllIo = 2(Io+ICl)Iouta (10)
2I7 (I, + Ie,) = I2, (11)
jO’lL
I¢, = CUp =22, (12)
Iout
I
Ic, = CUr 2, (13)
Iy

where the intermediate current I7 is the collector current of Q7. The factors 2
in eqns (10) and (11) are due to the emitter area scaling of Q5 and Q1.

Next, we have to find expressions for I,,: and I1; in terms of I, I,y and
I11. An equation for I,y is found by eliminating I¢, from (10) using (12). This
yields:

CUTjout =1, (%Ill - Iout) . (14)

To find an expression for I11, we first eliminate I7 from (9) and (11). From
the resulting equation, the capacitance currents I, and I, can be eliminated
using (12) and (13), after the derivative It has been eliminated from (12) by
using (14). This yields the second equation of the state-space description:

CUlel =1, (Izn - out) . (15)



Thus, a complete current-mode state-space description of the TL filter shown
in Fig. 7 is given by eqns (14) and (15). The overall transfer function can be
obtained easily using well-known techniques.

For the state-space analysis of tanh and sinh filters, instead of the common-
emitter (CE) output stage, the generic output stages of these filters, shown in
Fig. 8(b,c), must be used to sense the filter states. The current Iy is a dc bias
current.

o
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@

Figure 8: Generic output structures of (a) log-domain, (b) tanh, and (c) sinh
filters.

4 Classes of translinear filters

In all TL filters, the voltages are logarithmically related to the currents. There-
fore, these circuits are in some way instantaneous companding. Figure 9 shows
the general block schematic of an instantaneous companding integrator [?]. In
DTL circuits, the internal integrator is a linear capacitance. The expander E
expands the output voltage of this integrator into a current, exploiting the ex-
ponential V-1 transistor transfer function. Several types of TL filters can be
distinguished within the general class of DTL circuits based on the particular
implementation of E. Next to the most prevalent class of log-domain filters,
the two classes of tanh and sinh filters have been proposed by Frey [?]. In this
section, we describe their characteristics, which can be derived from the generic
output structures, depicted in Fig. 8.

y— = Xl ol E6) ey

ox

Figure 9: General block schematic of an instantaneous companding integrator.
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4.1 log-domain filters

Most published DTL circuits are based on the CE output stage shown in
Fig. 8(a), characteristic for the class of log-domain filters. The transfer function
from the capacitance voltage V., to the output current I,,; is given by the
well-known exponential law (1). In other words, E equals exp z. The compand-
ing characteristics of a TL filter can be derived from the second order derivative
of E with respect to x, denoted by E”. Without loss of generality, z = 0 is
considered to be the quiescent point of the integrator shown in Fig. 9. Applying
a strict definition of companding, E’’ should be strictly positive for z > 0 and
strictly negative for z < 0. Figure 10 displays E’ for the output stages shown
in Fig. 8. For log-domain filters, a comparison of B’ = expz with the strict
definition of companding reveals that these circuits are indeed companding for
z > 0; however, for z < 0 the exponential function constitutes a compression in-
stead of an expansion. For a symmetrical output current, the overall behaviour
of the CE output stage implies a compression rather than an expansion of the
peak-to-peak signal swings [?].

Figure 10: The second-order derivatives of the V-I transfer functions of the
output stages shown in Fig. 8.

From a current-mode point of view, the most important characteristic of a
DTL output structure is the current-mode expression for the capacitance current
I qp. For log-domain filters, I.,, is given by eqn (3), where I¢ = I + Ious. As
shown in Section 2, a linear derivative Ius is obtained by multiplying I.., by
Idc + Iout-

A favourable property of log-domain filters is that a linear damping term
can be implemented by the connection of a dc¢ current source I, in parallel to a
capacitance. This can be explained from eqn (4). If instead of I qp, Leap + I, is
multiplied by Ig. + Ioyt, an additional term I, - (Igc + Iout) is generated. The
first term 1,14, represents a dc offset current. The second term I, results in
a finite negative pole.

Typically, log-domain filters operate in class A. The actual ac signal I,,; is
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superposed on a dc bias current I;.. As a consequence, the output signal swing
is limited to I,,: > —I4.. This limitation is single sided,! which is advantageous
if a-symmetrical input wave-forms have to be processed. This characteristic can
be exploited to enable class AB operation [?,?]. Using a class AB set-up, see
Fig. 11, the dynamic range can be enlarged without increasing the quiescent
power consumption. Using a current splitter, the input current I;, is divided
into two currents I;,,1 and I;;,2, which are both strictly positive, and related to
Ly by: Ly = Iini — Iina. The current splitter impresses a constant geometric
or harmonic mean on I;;,; and I;,2. Next, I;,,1 and I;;,2 can be processed by
two class A log-domain filters. It is important to note that class AB operated
log-domain filters do satisfy the strict definition of companding due to the fact
that only positive currents are processed, i.e., z is never negative.

I |
in1 out
I '
. +
in current
> . lout
splitter ) ou
— | ¢ |
| in2 out2

Figure 11: Set-up for class AB operation.

4.2 tanh filters

Instead of a single transistor in CE configuration, the class of tanh filters is
characterised by a differential pair output structure [?], see Fig. 8(b). The
name of this class of filters is derived from the well-known hyperbolic tangent
V-I transfer function. The second-order derivative E’ is shown in Fig. 10 and
demonstrates that tanh filters are not companding at all [?]. The differential
pair implements a compresston function.

The tail current of the differential pair is a dc current Iz, and therefore,
tanh filters also operate in class A. The output current I,,; is the difference of
the two collector currents. The output swing is limited to —Ig, < I < Ige.
Since this interval is symmetrical, the class AB set-up shown in Fig. 11 cannot
be applied to tanh filters.

Using (6), the capacitance current I, is found to be:

jout - ‘out
Iegp = CU: — . 16
? T (Idc + Iout Idc - out) ( )

A linear derivative I,,; is obtained by multiplying this equation by (Ig +

11t is important to note that limitations of the signal swings are not only determined by
the type of output stage, but by the complete TL filter circuit.
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Iout)(-[dc - out):
2CUTIdcjout = Icap(Idc + Iout)(-[dc - out)- (17)

Comparing eqns (4) and (17), we can see that the RHS of (17) is third-order,
whereas the RHS of (4) is only second-order. Consequently, in general, TL
loops of a higher order are required to implement a tanh filter, resulting in a
more complex circuit. In addition, a linear loss cannot be implemented by a
dc current source connected in parallel to a capacitance. This leads us to the
conclusion that tanh filters do not seem to have any advantages over log-domain
filters.

4.3 sinh filters

The third class of DTL circuits proposed in literature is formed by the sinh filters
[?]. The output structure, shown in Fig. 8(c), is a complete second-order TL
loop. It implements the geometric mean function Igc = Iut1lout2. The actual
output current I,,; is the difference of I,,;1 and I,u2. Since both I,,:1 and
I,.t2 are always positive, the sinh output structure operates in class AB, which
is beneficial with respect to the dynamic range. The V-1 transfer function of the
output structure is a hyperbolic sine function. Figure 10 displays E” = sinh z
and shows that the sinh output stage implements a genuine expansion function.
The current-mode expression for the capacitance current I 4, is given by:

jout
Iy =CUp———. 18
? T Ioutl + Iout2 ( )

A linear derivative fout is obtained by multiplying I.,, by the sum I,y:1 + Louto-
It is interesting to note that the voltage V.4, and the current I,,:1 + Iouso are
related through a hyperbolic cosine function; the first-order derivative of E with
respect to z.

5 Dynamic voltage-translinear circuits

A generalisation of the DTL principle to strong inversion MOS transistors was
proposed independently by the authors [?] and Payne et al. [?]. These ‘Dynamic
Voltage-translinear?’ (DVTL) circuits add the capacitance as a basic element to
the conventional class of (static) voltage-translinear (VTL) circuits [?].

This section discusses the practical significance of DVTL circuits. Though of
crucial importance, the square law conformance of MOS transistors in modern
IC processes is not treated here; see, e.g., [?]. Instead, the practical relevance
of possible classes of DVTL circuits is discussed. In particular, three classes of
DVTL circuits are distinguished, which are based on the generic output stages

2The term ‘Voltage-Translinear’ proposed in [?] is used here as it clearly distinguishes
between TL principles based on the exponential law and VTL principles based on the square
law, as opposed to the term ‘MOS Translinear’ proposed in [?].
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shown in Fig. 12. It is shown that the two output stages depicted in Fig. 12(a,b)
are not very useful in practice, whereas the third output stage is in fact a well-
known circuit.

| +l|0[l_ |

| |, +l | ul |
Icapl ldc out |Capl‘ lc&ul‘ lout

I I

1
i

@ () © e

Figure 12: Generic dynamic voltage-translinear output structures.

5.1 ,/-domain output stage

The first DVTL output stage, the common-source stage, is characteristic for the
class of y/-domain filters [?,?]. The capacitance current I, is given by:

I _ C jout
o \ 218 Idc + Iout ‘

where 3 is the MOS transconductance factor.

Equation (19) can be used to implement the derivative Tout. A comparison of
the log-domain and the 1/-domain output structures, based on eqns (4) and (19),
shows that the latter class needs more circuitry to implement the derivative I,,;.
Only four transistors are required to implement a log-domain low-pass filter.
On the other hand, the implementation of the y/-domain integrator described
in [?] requires a square-rooting circuit and a multiplier. The multiplier again
comprises two squaring circuits. The y/-domain integrator published in [?]is a
little more efficient as it requires a square-rooting circuit and only one squaring
circuit. Nevertheless, it is clear that /-domain circuits require significantly
more transistors than log-domain circuits.

(19)

5.2 Differential pair output stage

Even more hardware is required to implement a linear derivative fout based on
the differential pair output stage, see Fig. 12(b), as the capacitance current I,
is now given by:

(20)

. _C < 1, >
o \ 218 ot \/Idc + Iout \/Idc - Iout ‘
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5.3 Analogue of the sinh output stage

More interesting is the output stage shown in Fig. 12(c), which is a direct
translation of the sinh DTL output stage. The capacitance current is now given

by:

c .
Ieop = ———=1Ious. 21
Ve Y

Note that I, and fout are linearly related. Alternatively speaking, the large-
signal V-I transfer function is linear. As a consequence, no additional circuitry
is required to linearise this output stage. It is already linear. In addition, this
stage allows a kind of class AB behaviour as the maximal current swing of I,
is four times as large as I4.

In fact, this output stage is a well-known circuit. Many, more or less similar,
implementations have been published, see, e.g., [?,7,?,?]. In essence, the large-
signal linear V-I relation is possible due to the fact that the square law MOS
model is a polynomial function. An analogue principle for DTL circuits is
fundamentally impossible since the exponential law is not a polynomial, but a
transcendental function.

To conclude, we can state that the class of \/~-domain circuits is interesting
from an academic point of view, but has little significance in practice. The
same conclusion applies to DVTL circuits based on the differential pair output
stage. Both the common-source and the differential pair output stage require
a significant amount of additional hardware for linearisation purposes, which is
not needed at all for the output stage shown in Fig. 12(c).

6 Synthesis methods

Several synthesis methods for translinear filters have been proposed in literature.
This section gives an overview of these methods.

6.1 Voltage-mode synthesis

The design of first-order TL filters based on exponential transformations was
introduced by Adams in [?]. Using a state-space approach, Frey was able to
generalise this synthesis method to filters of arbitrary order [?]. In addition, Frey
generalised this method to allow different exponential-like transformations [?,7].
The voltage-mode design procedure for TL filters begins with a state-space filter
description:

CUrl, = AL, + B, (22)
It = C-Z_-;: + Df;u (23)
where I, is the state vector, I, = (le, ... ,fzn)T, I, is the input vector, I y;

the output signal, and A, B, C and D are matrices.
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Using a voltage-mode approach, the capacitance voltages V¢, are used to
represent the state of the filter. A state-space description in the voltage-domain
is arrived at by applying exponential-like transformations to the states I, and
the input current I, = [I;,]. In general:

Ia:i :f’i(VCi)a 1€ [17 ,TL], (24)

where the functions f; and f are strictly monotonic. Different choices can be
made for the functions f;:

I;, = I, expaVg,, I;, = It tanh 1oV, I;, = I sinh aVg,,
(26)

where I,; and « are constants with dimensions [A] and [V~1], respectively.
These three functions comply with the classes of log-domain, tanh and sinh
filters, respectively. For log-domain circuits, this mapping procedure is only
valid if both I,, ¢ € [1,...,n], and I, are strictly positive. This restriction
is satisfied by applying linear transformations to eqns (22) and (23), through
trial-and-error, and/or by adding a dc input current I, i.e., L = [Lin, I2c]F .

As a result, a system of non-linear state-space equations results describing
the TL filter in terms of voltages and exponential functions:

L)) ~ f(Vin) .
CVe, _;auf,(meT +b1f,(mUT, iell,...,n], (27)

where a;; and b; represent the elements of the matrices A and B, and f'(V¢,)
is the first-order derivative of f(V¢,) with respect to V¢,.

Next, eqn (27) is interpreted as a set of nodal equations. The left-hand side
of eqn (27) equals the current flowing through the capacitance C;. Each of the
terms on the RHS of eqn (27) takes the form of a controlled exponential-like
transconductance. These controlled transconductances are mapped directly, or
possibly after some rearranging, onto a circuit implementation. Often, standard
building blocks are used to accomplish this. For example, Et, E~, T, S and
52 blocks are introduced in [?].

6.2 Component substitution

Another approach to the synthesis of TL filters is based on component sub-
stitution of prototype LC [?,7,7] or g, C filters [?,?]. The general idea is to
replace elements from a prototype filter by parts of TL loops. Within the gen-
eral class of TL filters, only methods for the design of log-domain filters have
been published.

All of these synthesis methods are based on the set-up depicted in Fig. 13,
consisting of three essential parts. At the input, a single transistor is used to
compress the input current I;,, resulting in a logarithmically related voltage V;,,.
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Next, this voltage is filtered by means of a so-called ‘log-filter’. The resulting
output voltage V,,: is expanded exponentially, again by a single transistor, into
the output current I,,;.

I; 2 log \Y lout

in n out

D Ing( ep() —>
n() filter PO

Figure 13: Prevalent log-domain filter set-up.

Most of the design effort goes into the design of a ‘log-integrator’. Basically,
the first-order building blocks to be designed are an inverting and a non-inverting
integrator, which are used next as substitutes for the integrator elements in the
signal-flow graph. Within a higher-order filter network, the internal compres-
sion and expansion stages of the first-order building blocks cancel, and hence,
these can be omitted, leaving only a single compression stage at the input and
an expansion stage at the output of the complete filter. Linear losses, i.e., re-
sistances, can simply be implemented by a dc current source in parallel with a
capacitance, as explained in Section 4.

Application of these component substitution based design methods is simple.
Yet, an important disadvantage seems that the designer cannot make any choices
along the synthesis path. In general, for each LC or g,,C prototype filter,
exactly one TL filter results. Therefore, the applicability of these methods is
restricted.

6.3 Translinear synthesis

In [?], Seevinck used a current-mode approach to the design of two TL inte-
grators. This current-mode synthesis methodology was generalised to filters of
arbitrary order by the authors [?,?]. A major advantage of this approach is
that it fits directly onto the synthesis method for STL circuits described in [?].
Consequently, all existing theory and experience on STL circuits can be em-
ployed in the design of DTL circuits. The design trajectory of both STL and
DTL circuits is depicted in Fig. 14, demonstrating the high level of similarity
between these two classes of circuits.

In most cases, synthesis of a static or dynamic (transfer) function starts with
a dimensionless equation. However, as soon as an electronic implementation
has to be found, quantities are bound to certain dimensions. In the case of TL
circuits, all signals and tuneable parameters, denoted by z;, are transformed
into currents by the equivalence relation:

L.
I’

where I, is a dc current. The dimensionless time 7 has to be transformed into

T; =

(28)

the time ¢ with its usual dimension [s], using the equivalence relation given by:

& CUrd
o~ I, ot (29)
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Figure 14: Synthesis path of (a) static and (b) dynamic translinear circuits.

Note that the presence of the current I, in this expression explains the excel-
lent linear tuneability of TL filters. Application of eqns (28) and (29) to a
dimensionless linear state-space description yields (22) and (23).

Conventional TL circuits are described by multivariate polynomials, in which
all variables are currents. The gap between these current-mode polynomials
and the DE can be bridged by the introduction of capacitance currents. For,
the DTL principle states that a derivative can be replaced by a product of
currents. The capacitance currents, denoted by the vector I_;ap =g, 1c,],
are introduced simply by defining them with the aid of eqn (6). In general, the

capacitance currents are a function of I, and I_;, le.:
Leap = Toay (0 1) (30)

To eliminate I, from eqn (22), (30) has to be solved to yield expressions for

I, = fx(I_;ap,I_;D). Substitution of these expressions in eqn (22) yields a set of
current-mode polynomials. Equations (4), (16) and (18) are valid choices for
the capacitance current definitions. Note that these equations are the current-
mode equivalents of eqn (26). However, eqn (30) is more general than that.
In general, each single capacitance current definition can depend on all state
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variables. Two examples are:
L, I
Ie. = R 1
o= OO (Im 1) ey

L, I
Ic, = ! 2 2
o: = ¢l (Im " I“) | e

which can be implemented by the output stages shown in Fig. 15. It is interesting
to note that eqns (31) and (32) represent a more general class of TL filters
as proposed in [?,?]. An example of a second-order TL filter based on these
generalised capacitance current definitions is described in [?].

)

@ (b)
Figure 15: Two capacitance current definitions.

From this point on, the synthesis theory for STL circuits can be used, as
llustrated by Fig. 14. The next synthesis step is TL decomposition. That is,
the state-space polynomials have to be mapped on a set of TL loop equations,
given by (2). A thorough treatment of the TL decomposition process can be
found in [?].

The last synthesis step is biasing. The TL decomposition has to be mapped
on a TL circuit topology and the correct collector currents have to be forced
through the transistors. Biasing methods for bipolar all-NPN TL topologies
are presented in [?]. Additional biasing methods include the use of (vertical)
PNPs, compound transistors or (simple) nullor implementations. If subthresh-
old MOSTs are used, some additional possibilities are the application of the
back gate [?,?] and operation in the triode region [?]. Once a proper bias-
ing arrangement has been designed, the prototype circuit can be analysed for
second-order effects. At this stage, an analysis method in the same domain is
indispensable.

6.4 Synthesis based on the Bernoulli DE

The synthesis method for log-domain filters proposed in [?] follows a bottom-up
approach. The design procedure is based on the generic circuit structure shown
in Fig. 5. The analysis of the structure has shown that it is described by the
state-space description (8). To synthesise a TL filter, eqn (8) is compared with
a state-space description of the filter to be realised. This yields the necessary
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form of the currents I,,,. The task of the designer is to find ways to generate
the currents I,,, using conventional TL techniques.

7 State-of-the-art

Many skilfully designed DTL circuits have been presented in literature. Due to
the limited space available, the state-of-the-art overview given in this section is
limited to those designs that have been experimentally verified. To the authors’
knowledge, this amounts to a total of eleven different TL filter designs [?,?,7,7,
?,7,7,7,7,7,7] The specifications of these filters are summarised in Tables 1 and
2. Values between round brackets were calculated or estimated from the data

presented in the cited publications.

Table 1: Class A log-domain filters.

7]

7] 7] 7] 7] 7]
Process Bipolar | 0.8 © BiCMOS Bipolar Bipolar | 2u CMOS
Filter LPF, 5 LPF, 4 BPF[Q:3.6-66],5 | LPF, 2 BPF, 2
f. [He] 40 k 100-10 k 125 M-430 M 1.6k-8k | 75-15k
DR [dB] 52 60 (55) 57 -
Total C [pF] - 55 18 100 20
Power [W] (25 m) 1u 81 m 6 u -
Supply [V] 10 5 2.7 1 -

1 p BiCMOS
LPF, 3
10 k-10 M
57
57
23 p
1.2

Table 2: Class AB translinear filters.

7] 7] EREG 8
Process 2 1 BiCMOS | 1 x4 BiCMOS | Bipolar | Bipolar | Bread-board
Filter LPF, 3 LPF, 3 LPF, 1 | APF, 2 LPF, 1
fe [He] 10 k-100 k 10 k-15 M 1k-8k | 155k 1.6k
DR [dB] - 65 73 62 76
Total C [pF] 500 59 100 80 100
Power [W] 180 4 65 p 2 p 2 p 1u
Supply [V] 4 1.2 1 1.8 3.3

Probably the most important filter specification is the dynamic range (DR).
Although the area of TL filters is still quite young, the results already compare
well with the specifications that are typically obtained using g,,C filters, i.e.,
40-70 dB [?]. Comparing the DR specification of the different TL filters is not
easy, since the DR is influenced by many factors, e.g., power consumption and
total capacitance. It is however interesting to note the difference in DR between
class A and class AB operated TL filters. The filter specifications shown in Table
1 are obtained from log-domain filters operated in class A. Table 2 presents the
results of class AB operated TL filters. The filters published in [?,7?,7] are log-
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domain filters; the filters published in [?,?] are sinh filters. The class AB nature
of the filters in Table 2 explains the structurally better DR specifications.

Application of the DTL principle is not limited to the implementation of
linear filters. Non-linear DEs can be realised just as well. As of today, the
list of experimentally verified designs is still quite short. Only three designs
are known to the authors: an oscillator [?], an RMS-DC converter [?] and a
PLL [?,?]. The interested readers are referred to these papers for measurement
results.

With the increasing number of researchers of DTL circuits, we can expect
to see more and more realisations, both for linear and non-linear applications.
It will be interesting to see to what extend the specifications obtained thus far
can be improved in the future.

8 Conclusions

Dynamic translinear circuits constitute an exciting new approach to the inte-
gration of analogue signal processing functions. These circuits might prove to
be the best approach to face the dynamic range limitations, conventional in-
tegrated circuits are facing due to low-power, low-voltage and high-frequency
demands. This field is receiving increasing interest and encouraging results have
been obtained thus far. The future will show to what extent these results can
be improved.
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