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Abstract—This paper presents the design and implementation
of a real-time epilepsy detection filter that is suitable for closed-
loop seizure suppression. The design aims to minimize the
detection delay, while a reasonable average detection rate is
obtained. The filter is based on a complex Morlet wavelet and uses
an adaptive thresholding strategy for the seizure discrimination.
This relatively simple configuration allows the algorithm to run
on a cheap and readily available microprocessor prototyping
platform. The performance of the filter is verified using both
in vivo real-time measurements as well as simulations over a
pre-recorded EEG dataset (29.75 hours with 1914 seizures). An
average detection delay of 492 ms is achieved with a sensitivity
of 96.03% and a specificity of 93.60%.

Several studies have shown the feasibility of a closed-
loop system for epilepsy suppression by using electrical or
optogenetic stimulation of various parts of the central nervous
system [1], [2], [3]. These systems apply stimulation when
ictal activity is detected in electroencephalogram (EEG) or
electrocorticography (ECoG) recordings. Such an epilepsy
detection system should detect a seizure as fast as possible
in order to minimize the ictal time for the subject.

Wavelets have been previously proposed as a tool to detect
epileptic seizures, since they make it possible to look at the
frequency and time properties of the signal simultaneously [4].
This paper presents the design of a wavelet based detection
filter that aims to minimize the detection delay. The wavelet
is implemented by a Finite Impulse Response (FIR) filter of
which the impulse response corresponds to a truncated wavelet
at a single scale. The detection is made with an adaptive
thresholding mechanism. Due to the low complexity, it is
possible to implement it using cheap and readily available off-
the-shelve components, allowing for rapid prototyping, max-
imum flexibility and easy reproducibility. A realization using
the credit-card sized Beaglebone microprocessor platform is
discussed and the performance is analyzed and compared with
other detection methods. Furthermore, in vivo measurements
confirm the applicability of our system in a closed-loop setup.

I. BACKGROUND

The ECoG recordings used for this study are obtained from
awake Cacnala®%°'" (tg) mutant mice, that exhibit absence
seizures. For the ECoG recordings Teflon coated silver ball
tip electrodes (diameter 0.2 mm, Advent Research Materials,
Eynsham, Oxford, UK) are mounted bilaterally above the
primary motor cortices and primary sensory cortices. The
recorded signals from the head-fixed animals are amplified
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using a Cyberamp amplifier (Molecular Devices LLC., Axon
Instruments, Sunnyvale, CA, USA). An epileptic absence
seizure is characterized by massive synchronous discharging of
thalamo-cortical neurons at a certain frequency 5Hz < f. <
8 Hz. In the ECoG this translates into cortical spike-and-wave
discharges (SWDs) that repeat themselves at this frequency.
An epileptic seizure is defined as a continuous bursting of
cortical SWDs in the EEG for at least 1s. Ictal activity should
therefore be detected within a few hundred ms such that it can
be suppressed before it develops into a seizure.

A dataset consisting of 29.75hours (split in traces of 15
minutes) of prerecorded ECoG data from 24 subjects was
available to analyze the performance of the filter. Based on the
above definition of an epileptic seizure, the data was annotated
to determine time stamps at which seizures (N = 1914)
start and end. These time stamps were obtained by an offline
algorithm that uses peak detection to find the SWDs and labels
an interval as a seizure when the SWDs occur with a repetition
rate of at least 5Hz during at least 1s. The outcome of the
algorithm was validated visually by a neuroscientist.

Most studies on closed-loop seizure suppression give little
details about the performance of the detection method used.
In [3] simple thresholding is used, which is fast, but very
sensitive to artifacts in the EEG. In [1] this is improved by
low pass filtering the output of the threshold, but this increases
the detection delay (by 200ms), while it is still vulnerable
to artifacts. In [2] the line length method from [5] is used,
where a detection delay in the order of 4.1 s is reported. Other
real-time detection systems that are suitable for closed-loop
seizure detection include the work described in [4] based on
wavelet filtering combined with median filtering. Depending
on the settings, a detection delay of 1.5-2s is achieved. The
work reported in [6] features real-time operation, uses an
Artificial Neural Network based on Reservoir Computing and
has a 1s detection delay. The only FDA approved closed-
loop neurostimulation currently available uses several detection
mechanisms (bandpass, line-length and area) and reports 600-
2000 detections per day [7].

II. IMPLEMENTATION

A system overview of the online seizure detection system
is depicted in Figure 1(a). The input of the system consists of
the ECoG signals, which are first fed through an analog input
filter for signal conditioning that is implemented on a custom
PCB. Subsequently the seizure detection filter is realized
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In a) the closed-loop epilepsy detection system is depicted with the analog input filter (PCB) and the digital filter (Beaglebone) highlighted. In b) the

implementation of the analog input filter is depicted that is used to make the recorded input signal suitable for digitization.

in the digital domain on a Beaglebone microprocessor. The
output can be used to enable seizure suppression techniques,
such as for example an optogenetic stimulator. This work
focuses on the detection system itself and does not include the
stimulator yet. In the following sections the implementation of
the proposed system is discussed in detail.

A. Input filter

The recorded EEG signals are first fed through an analog
filter that has four functions: (1) amplification, (2) offset
injection in order to match the signal to the input range of
the Analog to Digital Converter (ADC), (3) artifact removal
by using a second-order 0.4Hz high-pass filter and (4) anti-
aliasing by means of a second-order 23.4Hz low-pass filter.
The filter topology that is used for this application is depicted
in Figure 1(b). The first stage is a buffer to prevent the EEG
signal from being loaded. Subsequently, the amplitude of the
EEG signal is regulated towards Vjeak—peak < 1.8V, which
corresponds to the input range of the ADC. The inverting am-
plifier accommodates both amplification as well as attenuation
in order to handle a large range of input signals. The signal is
then passed through a high pass filter to remove unwanted
offset and artifacts in the EEG signal. By choosing C;
2.2pF and R; = 180kS2 the cut-off frequency is fonpr =
27/ Ri R C1C1) ™! = 402 mHz. Offset injection is necessary
to shift the signal between 0V and 1.8 V to accommodate the
ADC input range. Finally a second order anti-aliasing filter is
implemented using Co = 68nF and Ry = 100k(, yielding
a cut-off frequency f. 1ot = (2my/RaR2C2C3) ™! = 23.4Hz.
All operational amplifiers are LF353 and use a +5V/=5V
power supply.

B. Digital Wavelet filter

The wavelet filter is implemented on the commercially
available Beaglebone microprocessor platform. The processor
is an AM335x ARM Cortex-A8 running at 720 MHz. The
signal is first converted to the digital domain using the on-
board 12bit ADC from the Beaglebone using a sampling
frequency f; = 100Hz. The signal is subsequently filtered
using a 64th order FIR filter approximating a complex Morlet
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Fig. 2. The average output of a continuous time complex Morlet wavelet
filter over 1914 pre-recorded seizures. All seizures have a varying duration,
but were aligned to have their onset at 1s. The maximum output is obtained
for the wavelet scale of 7Hz. A single seizure is plotted at the top of the
figure for illustrative purposes.

wavelet filter for which the details are given in the subsequent
section. Finally, using an adaptive dual threshold mechanism,
a decision is made whether there is a seizure or not.

1) Complex Morlet for epilepsy detection: In this work the
complex Morlet wavelet (Gabor wavelet) was chosen, because
of the similarity of the wavelet compared to the morphology
of the spikes during a seizure. The complex Morlet is defined
as follows:

U,(t) = cc,7r*ie*%t2 (ei”t — /a'g)

ey

o = exp(—30°). ¢ = \/1+ exp(—0%) — 2exp(—30?)

and o determines the scale of the wavelet. To find the optimal
value of o, the response of an ideal continuous-time Morlet
wavelet filter is obtained over various frequency scales fscqie
for each seizure individually using the pre-recorded database.
In Figure 2 the averaged wavelet output is shown during a
seizure. The maximum output is obtained at fs.qie = 7Hz
and therefore this scale was chosen for the implementation of
the filter.

The ideal wavelet has an infinite time span and therefore
has to be truncated when implemented in a practical FIR
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Fig. 3. In a) the trade-off between detection delay and wavelet precision
as a function of the FIR truncation is shown. The green line is the detection
delay and the black line shows the accuracy of the wavelet implementation.
The black dotted line shows the chosen truncation setting at 101 samples for
which the complex (i.e. real and imaginairy) impulse response is shown in b)

filter [8]. A trade-off between precision and delay has to be
made: the more the wavelet is truncated at the start of the
FIR, the faster a detection is made, but the less precise the
impulse response approaches the wavelet. To find the optimal
truncation, all 1914 seizures were filtered using a set of FIR
filters with different truncations. When making a truncation, it
was assured that the DC value of the impulse response of the
real and imaginary part were both zero by adding an offset, as
required for a wavelet filter.

For each truncation setting the average response of the FIR
filter was obtained over the dataset. Based on this response
the average delay and precision can be determined. The delay
of the response was determined by the time at which the
maximum in the filter response was reached with respect to
the onset of the seizure. This is depicted with the green line in
Figure 3(a). The accuracy is determined by considering how
well the filter is able to distinguish between ictal and interictal
activity. Therefore the maximum in the averaged response
during a seizure is divided by the average value of the response
during interictal activity. This is depicted using the black line
in Figure 3(a). For each truncation the £2 norm of the FIR filter
is kept constant: /Y |z;|? = 1, in which x; are the complex
coefficients of the wavelet filter.

The accuracy of the filter worsens for truncations > 100,
because this is where the impulse response reaches its maxi-
mum value. Based on the results in Figure 3(a), it was chosen
to truncate the filter with 101 samples. The accuracy is close
to the optimal value, while the delay is 490 ms. Note that this
is value is not equal to the detection delay of the overall filter,
because this also depends on the decision making strategy that
is used. In Figure 3(b) a plot is shown of the FIR with the
chosen truncation settings.

2) Dual Threshold detection: To minimize the detection
delay, it was chosen not to include a median filter [4] or other
low-pass filters at the output of the wavelet filter. Instead a
dual-thresholding mechanism is used: the output is enabled
upon a positive crossing of the higher threshold Vi, 5, and is
disabled upon negative crossing of the lower threshold V;j, ;.
Because of the large variety in signal amplitudes over subjects,
the value of both thresholds is determined using an adaptive
thresholding technique. V;y, ; is the running average of the filter
output: because the ictal time is short compared to the inter-
ictal time, the average will be close to the average of the inter-
ictal period. V;j 5, is obtained by low-pass filtering the output
Y (i) of the wavelet filter:
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Fig. 4. The input and output of the filter is shown with in the detail the
response during the start of a seizure. The red lines correspond to the dual
thresholds, while the thick red lines indicate when the output of the filter is
enabled.
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This low-pass filtering does not compromise the detection
delay, because it is only used to determine V;pj and is not
included in the main signal path. By choosing 7, small, V5,
will increase rapidly during ictal activity when Y (2) > Vip, p,
while a large value of 744, Will decrease V;y, 1, slowly during
inter-ictal time. In this way V}j, 5, will reach a value somewhat
below the average value during a seizure. In Figure 4 the
response of the filter during a typical seizure is depicted for
illustrative purposes. The effect of the adaptive thresholding is
visible, as well as the detection delay, which is around 620 ms
for this particular seizure. Note that the adaptive thresholding
makes the system easy to use compared to systems that need
specific training samples [6]. The proposed system is almost
‘plug-and-play’ since the user only needs to wait for a few
seizures before the filter is settled.

III. EVALUATION

The performance of the proposed filter is analyzed over
the complete dataset using various values of 7,, and Tiown.-
The raw ECoG data was first processed using a filter with a
response equivalent to the circuit in Figure 1(b). The signal
is subsequently sampled with f; = 100 Hz and quantized (12
bits accuracy), corresponding with the ADC. Finally, the output
of the filter was obtained by replicating the FIR filter and the
thresholding mechanism. To allow the values of V;, ; and Vi, ,
to settle, the data before the first 4 seizures for each subject
from the set of annotated seizures was used as the training
dataset and therefore discarded.

A False Negative (FN) was defined as the absence of a
detection during an ictal time-stamp from the from the set
of annotated seizures. A False Positive (FP) was defined as
a detection in the absence of one or more SWDs in the
ECoG. SWDs were identified using visual inspection of the
ECoG by a neuroscientist. This definition was chosen, since
upon detection of an SWD it is not yet known whether this
ictal activity will develop into a seizure or not. In Table I



TABLE 1. PERFORMANCE METRICS USED TO BENCHMARK THE

PROPOSED DETECTION SYSTEM [6]

Metric
Detection delay

Description
The delay between the onset of the seizure annotation and
the detection of the filter.

FPPS False-Positive-Per-Seizure rate: the number of False positives
divided by the number of seizures.
FNPS False-Negative-Per-Seizure rate: the number of False nega-

tives divided by the number of seizures.

Sensitivity The percentage of seizures that was detected successfully.
Specificity The percentage of correctly classified inter-ictal intervals.
ADR Average Detection Rate: 0.5(sensitivity + specificity)
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Fig. 5. The Average Detection Rate (ADR) of the filter is given for various
values of Tup and Ty, -

the performance metrics that are used for comparison are
summarized.

Figure 5 shows the Average Detection Rate (ADR) of the
filter over the complete dataset for various values of 7, and
Tdown- From this figure the optimal values for a sensitivity of at
least 95% were chosen, yielding 7, = 5s and Tgown = 720s.
The performance of the filter over the complete dataset is
summarized in Table II. As can be seen, compared to other
implementations, the proposed implementation achieves a very
low detection delay at the cost of a decrease in specificity. This
trade-off between detection delay and accuracy is very typical
for epilepsy detection systems, as was shown in [4]. In the
proposed implementation, the feature extraction uses only one
component (complex morlet wavelet) and the decision making
is relatively simple (adaptive thresholding), allowing for a
low detection delay and a simple realization with cheap and
readily available hardware. Both the feature-extraction as well
as the decision-making components of the detection system can
benefit from more sophisticated designs, but this will increase
the computational complexity and/or the detection delay.

To validate the implementation of the filter at the hardware
level, the complete system has been realized according to
the scheme in Figure 1(a). It was programmed to generate
a 30 ms binary pulse upon detection of a seizure, which could
be used to trigger a stimulation unit if the system would be
deployed in an actual closed-loop setting. After a pulse, the
system will wait 500 ms before generating another pulse if
the seizure is still active. In Figure 6(a) an example of the
output during a seizure from in vivo measurement results is
shown. In Figure 6(b) it can be seen that the detection delay
after onset of this particular seizure is in the order of 200 ms.
These measurements show that the proposed filter can be used
successfully in in vivo measurement setups. More measurement
data is required to compare the performance of the hardware
realization with the results from Table II.
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TABLE II. COMPARISON OF THE PERFORMANCE OF VARIOUS
REAL-TIME SEIZURE DETECTION SYSTEMS
Reference [5] [4] [6] This work
Detection delay 4.1s 1.5s 0.97s 0.492s
Std dev. o 3.78s 7.2s 0.93s 0.157s

FPPS 1.44 0.04 0.091 0.090
FNPS 0.023 0 0.065 0.040
Specificity Unknown  Unknown  98.2% 93.60 %
Sensitivity Unknown 100 % 96.2%  96.03%
ADR Unknown  Unknown 97.2% 94.81 %
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Fig. 6. In vivo measurement results of the epilepsy detection system. After 4
SWDs in the ECoG signal the detection is made and the stimulator is enabled,
which subsequently suppresses the ictal activity. In a) the output during a full
seizure is depicted, while in b) the onset of the seizure is shown.

IV. CONCLUSIONS

In this paper the design and realization of an epileptic
seizure detection system based on wavelet filtering is de-
scribed, featuring a very short detection delay. It uses adaptive
dual thresholding to accommodate the large variability of
input signal levels over multiple subjects without the need
to manually change parameters. The system is implemented
using off-the-shelf components, making it a cheap, flexible and
easily reproducible. In vivo measurements confirm the correct
functionality in a physical measurement setup.
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